
Christian Geuer-Pollmann

2004

Herausgeber: Univ.-Prof. Dr. Christoph RulandBand 9

Forschungsberichte

UNIVERSITÄT SIEGEN
Institut für Digitale Kommunikationssysteme

Confidentiality of

XML documents

by Pool Encryption

Confidentiality of
XML documents

by Pool Encryption

Vom Fachbereich Elektrotechnik und Informatik der
Universität Siegen

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
(Dr.-Ing.)

genehmigte Dissertation

von

Dipl.-Ing. Christian Geuer-Pollmann

1. Gutachter: Univ.-Prof. Dr. Christoph Ruland, Universität Siegen
2. Gutachter: Univ.-Prof. Dr. Rüdiger Grimm, TU Ilmenau
Vorsitzender: Univ.-Prof. Dr. Wolfgang Merzenich, Universität Siegen

Tag der mündlichen Prüfung: 29. Juli 2003

urn:nbn:de:hbz:467-647
urn:isbn:3-8322-2846-2

http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:hbz:467-647&typ=liste
http://www.shaker.de/Online-Gesamtkatalog/Details.asp?ISBN=3-8322-2846-2

2004

Confidentiality of
XML documents
by Pool Encryption

Institut für
Digitale Kommunikationssysteme

Forschungsberichte

Herausgeber:Univ.-Prof.Dr.ChristophRuland

Band 9

Christian Geuer-Pollmann

UNIVERSITÄT SIEGEN

Bibliografische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.ddb.de/ abrufbar.

Zugl.: Siegen, Univ., Diss., 2003

Copyright Shaker Verlag 2004
Alle Rechte, auch das des auszugsweisen Nachdrucks, der auszugsweisen
oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungs-
anlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8322-2846-2
ISSN 1614-0508

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen
Telefon: 02407 / 9596 - 0 • Telefax: 02407 / 9596 - 9
Internet: www.shaker.de • eMail: info@shaker.de

Für Gabriele,

Georgia und Philipp

Acknowledgements

This work was written while I was research assistant at the ‘Institute for Data
Communication Systems’ at University of Siegen between November 1998
and May 2003.

This is the place to dedicate a sincere “thank you” to the people I have been
surrounded with.

First, I want to express my gratitude to Prof. Dr. Christoph Ruland for being
my scientific mentor, for his valuable suggestions and amicable discussions as
well as the excellent working conditions at the Institute for Data Communica-
tion Systems in Siegen.

My thanks further go to Prof. Dr. Rüdiger Grimm from TU Ilmenau for his
interest in my work and for being my second promoter and to Prof. Dr. Wolf-
gang Merzenich for chairing the board of examiners.

It was a great pleasure to work together with Christoph Stepping, Oliver Jung,
Luigi Lo Iacono, Tobias Lohmann, Seung Wook Jung, Sven Kuhn and espe-
cially Kai Wollenweber and Niko Schweitzer. Thanks also to Matthias
Schneider the Institute’s good soul, Christine Haßler, for continuous support
during the adversities of everyday life at the University.

Besides these direct contacts at the Institute, I would also like to thank the
members of the W3C XML Signature Working Group (most notably Ed Simon,
John Boyer, Gregor Karlinger and Merlin Hughes) for deep insights into the
XML internals. To my friend Christian Lemburg a “thank you” for the invalu-
able reference to Joe Celko’s Adjacency List Mode.

Special thanks go to my parents Maria and Heinrich Geuer, my siblings Franz,
Klaus and especially Hildegard, my parents-in-law Marlies and Eberhard Poll-
mann as well as my brother-in-law Andreas for their motivation, their moral
backing and perpetual support and uncounted hours of baby sitting.

I would like to thank my beloved children Georgia and Philipp for the love
which they gave me, inadvertently of how many hours I disappeared at my
computer.

My deepest thanks go to my wife Gabriele for her love and patience, her
encouragement and her faith in me during the years. This work would not
have been written without this nearest counselor and friend of mine.

Düsseldorf, July 2003

Christian Geuer-Pollmann
i

http://www.uni-siegen.de/
http://www.nue.et-inf.uni-siegen.de/~ruland/
http://www.tu-ilmenau.de/~rgrimm/
http://www.tu-ilmenau.de/~rgrimm/
http://www.informatik.uni-siegen.de/ps/mitarbeiter/mitarbeiter_152.jsp
http://www.informatik.uni-siegen.de/ps/mitarbeiter/mitarbeiter_152.jsp
http://www.amazon.de/exec/obidos/ASIN/3832200479/
http://www.amazon.de/exec/obidos/ASIN/3832200479/
http://www.amazon.de/exec/obidos/ASIN/3832211209/
http://www.amazon.de/exec/obidos/ASIN/3832217568/
http://www.amazon.de/exec/obidos/ASIN/3832217568/
http://www.amazon.de/exec/obidos/ASIN/383220430X/
http://www.amazon.de/exec/obidos/ASIN/3832214178/
http://www.nue.et-inf.uni-siegen.de/~schneier/
http://www.nue.et-inf.uni-siegen.de/~schneier/
http://www.nue.et-inf.uni-siegen.de/~hassler/
http://www.nue.et-inf.uni-siegen.de/~hassler/
http://www.w3.org/Signature/
http://www.w3.org/Signature/
http://www.xmlsec.com/
http://www.xmlsec.com/
http://www.iaik.tu-graz.ac.at/aboutus/people/karlinger/index.php
http://www.iaik.tu-graz.ac.at/aboutus/people/karlinger/index.php
http://www.clemburg.com/
http://www.clemburg.com/

Danksagung
Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftli-
cher Mitarbeiter des Institutes für Digitale Kommunikationssysteme an der
Universität Siegen im Zeitraum zwischen November 1998 und Mai 2003.

Nun ist der Zeitpunkt gekommen, den Menschen ein herzliches Dankeschön
zu widmen, die mich während dieser Zeit mit Rat und Tat unterstützt haben.

Zunächst danke ich Prof. Dr. Christoph Ruland für die wissenschaftliche
Betreuung meiner Arbeit, für die wertvollen Anregungen und freundschaftli-
chen Diskussionen sowie für die exzellenten Arbeitsbedingungen am Institut
für Digitale Kommunikationssysteme in Siegen.

Mein Dank gebührt weiterhin Prof. Dr. Rüdiger Grimm von der TU Ilmenau
für das der Arbeit entgegengebrachte Interesse und die Übernahme des Korre-
ferats sowie Prof. Dr. Wolfgang Merzenich für die Bereitschaft, den Vorsitz der
Prüfungskommission zu übernehmen.

Meinen ehemaligen Kollegen Christoph Stepping, Oliver Jung, Luigi LoIacono,
Tobias Lohmann, Seung Wook Jung, Sven Kuhn und insbesondere Kai Wollen-
weber und Niko Schweitzer danke ich für die gute Zusammenarbeit und die
schöne, gemeinsame Zeit am Institut. Matthias Schneider und der guten Seele
des Instituts, Christine Haßler, gebührt mein besonderer Dank für die stetige
Unterstützung bei den Widrigkeiten des Universitäts-Alltags und die freund-
schaftliche Zusammenarbeit.

Neben den direkten Kollegen am Institut möchte ich den Mitgliedern der
W3C XML Signature Working Group (insbesondere Ed Simon, John Boyer,
Gregor Karlinger und Merlin Hughes) für die tiefen Einblicke in die Interna
von XML mit allen seinen Facetten danken. Meinem Freund Christian Lem-
burg danke ich für den unbezahlbaren Hinweis auf Joe Celkos Beschreibung
des Adjacency List Mode.

Meinen Eltern Maria und Heinrich Geuer, meinen Geschwistern Franz, Klaus
und insbesondere Hildegard, meinen Schwiegereltern Marlies und Eberhard
Pollmann sowie meinem Schwager Andreas möchte ich meinen ganz besonde-
ren Dank sagen für ihre Motivation, die moralische Unterstützung, den immer-
währenden, verlässlichen Rückhalt sowie für die Betreuung der Kinder.

Meinen geliebten Kindern Georgia und Philipp danke ich für die Liebe, mit
der sie mir begegnet sind, wenn ich wieder einmal am Rechner verschwun-
den war.

Meiner Ehefrau Gabriele möchte ich größten Dank sagen für ihre Liebe und
Geduld, ihren Zuspruch und ihr Vertrauen während der vergangenen Jahre.
Ohne diese engste Beraterin, Freundin und größte Stütze wäre mir diese
Arbeit nicht möglich gewesen.

Düsseldorf, im Juli 2003

Christian Geuer-Pollmann
ii

http://www.w3.org/Signature/
http://www.w3.org/Signature/
http://www.xmlsec.com/
http://www.iaik.tu-graz.ac.at/aboutus/people/karlinger/index.php
http://www.iaik.tu-graz.ac.at/aboutus/people/karlinger/index.php
http://www.nue.et-inf.uni-siegen.de/~ruland/
http://www.tu-ilmenau.de/~rgrimm/
http://www.tu-ilmenau.de/~rgrimm/
http://www.informatik.uni-siegen.de/ps/mitarbeiter/mitarbeiter_152.jsp
http://www.informatik.uni-siegen.de/ps/mitarbeiter/mitarbeiter_152.jsp
http://www.clemburg.com/
http://www.clemburg.com/
http://www.nue.et-inf.uni-siegen.de/~schneier/
http://www.nue.et-inf.uni-siegen.de/~schneier/
http://www.nue.et-inf.uni-siegen.de/~hassler/
http://www.nue.et-inf.uni-siegen.de/~hassler/
http://www.uni-siegen.de/
http://www.amazon.de/exec/obidos/ASIN/3832200479/
http://www.amazon.de/exec/obidos/ASIN/3832211209/
http://www.amazon.de/exec/obidos/ASIN/3832217568/
http://www.amazon.de/exec/obidos/ASIN/3832217568/
http://www.amazon.de/exec/obidos/ASIN/383220430X/
http://www.amazon.de/exec/obidos/ASIN/383220430X/
http://www.amazon.de/exec/obidos/ASIN/3832214178/
http://www.amazon.de/exec/obidos/ASIN/3832214178/

Abstract

The eXtensible Markup Language (XML) is a widely adopted format for docu-
ments containing structured information. Structured information contains
both the content (words, images etc.) and the ‘markup’ which indicates the
role of the content, e.g. ‘section’ or ‘price’.
XML is the foundation for a huge variety of existing and emerging applica-
tions, including user applications like vector imaging formats, web pages,
enterprise application integration, database interfaces or network protocols.
Parallel to the increasing use of XML, the level of security provisions for these
XML based systems rises. The World Wide Web Consortium (W3C) addressed
these issues by creating the “XML Signature Syntax and Processing” and “XML
Encryption Syntax and Processing” recommendations. These standards define
authentication, integrity and confidentiality mechanisms for XML documents.
The XML Signature recommendation defines a method for digitally signing
arbitrary portions (nodes) of an XML document. XML Signature can sign both
tree structures and arbitrary sets of nodes of an XML document.
The XML Encryption recommendation specifies a method for encrypting tree
structures in an XML document. The XML Encryption recommendation is con-
strained to protect full tree structures, i.e. there is no mechanism to protect
the confidentiality of a single node in a document without affecting the
descendants of that node.
The access control community transformed access control models originating
in database systems to be available for XML based databases. These access
control systems offer fine-grained access control enforcement on the node
level, similar to the node level integrity protection of XML Signature. For
example, XML Access Control systems can restrict the read access to a partic-
ular node in an XML tree while allowing access to its child nodes.
This thesis is focused on the development of a cryptography based system
which can protect the confidentiality of arbitrary nodes in an XML tree. This
goal is reached by combining a tree addressing scheme of databases with
cryptographic mechanisms. This system is called “XML Pool Encryption”.
To verify the results of this thesis, XML Pool Encryption has been imple-
mented using the Java programming language.
iii

Zusammenfassung

Die eXtensible Markup Language (XML) ist ein weit verbreitetes Format für
Dokumente, die strukturierte Information enthalten. Strukturierte Informa-
tion umfasst sowohl den eigentlichen Inhalt (z.B. Wörter, Bilder, etc.) sowie
Auszeichnungsinformation, um die Rolle der Inhalte zu umschreiben, z.B.
“Überschrift” oder “Preis”.
XML bildet die Grundlage für eine große Anzahl existierender und im Entste-
hen begriffener Anwendungen, wie z.B. Vektorgrafik-Formate, Web Seiten,
Enterprise Application Integration Systeme, Datenbank Schnittstellen oder
Netzwerkprotokolle.
Parallel zur steigenden Verbreitung von XML werden immer mehr Vorkehrun-
gen zum Schutz der auf XML basierenden Systeme notwendig. Das World
Wide Web Consortium (W3C) hat sich dieser Notwendigkeit angenommen,
indem die “XML Signature Syntax and Processing” und die “XML Encryption
Syntax and Processing” Empfehlungen verabschiedet wurden. Diese Standards
definieren Mechanismen für Authentisierung, Integrität und Vertraulichkeit
von XML Dokumenten.
Die XML Signature Recommendation definiert einen Mechanismus, um belie-
bige Teile eines XML Dokumentes (Nodes) digital zu signieren. XML Signature
kann sowohl Baumstrukturen als auch beliebig geformte Knotenmengen eines
XML Baumes schützen.
Die XML Encryption Recommendation definiert einen Mechanismus für das
Verschlüsseln von Baumstrukturen innerhalb eines XML Dokumentes. W3C
XML Encryption ist hierbei auf die Verschlüsselung kompletter Baumstruktu-
ren beschränkt, d.h. es existiert keine Möglichkeit, die Vertraulichkeit für ein-
zelne Knoten im Dokument zu gewährleisten, ohne dass die Kinder dieser
Knoten ebenfalls geschützt werden.
Für die Zugriffskontrolle von XML basierten Daten wurden Zugriffsschutzmo-
delle aus dem Datenbankbereich überarbeitet. Diese Systeme bieten die
Durchsetzung fein granularer Zugriffskontrolle auf Knotenebene, ähnlich dem
Integritätsschutz beliebiger Knoten bei XML Signature. So ist es beispielsweise
möglich, den Lesezugriff auf einen Knoten zu verweigern, während die Kin-
der dieses Knotens weiterhin lesbar bleiben.
Im Mittelpunkt dieser Arbeit steht die Entwicklung eines auf kryptografischen
Verfahren basierenden Systems, welches die Vertraulichkeit für beliebige Kno-
ten eines XML Baumes gewährleistet. Dieses Ziel wurde durch die Kombina-
tion eines Schemas für die Adressierung von Baumstrukturen mit
kryptografischen Verfahren erreicht. Dieses System wird “XML Pool Encryp-
tion” genannt.
Zur Überprüfung der Resultate dieser Arbeit wurde XML Pool Encryption in
Java implementiert.
iv

Table of Contents

1 Introduction ...1

2 IT Security Services and Mechanisms ...5

2.1 Security services ..6

2.2 Confidentiality ..6

2.2.1 Definitions ...7

2.2.2 Ways to disclose information ...8

2.2.3 Types of confidentiality security mechanisms ...8

2.2.4 Cryptographic algorithms for confidentiality security mechanisms9

2.2.4.1 Encryption mechanisms ..9

2.2.4.2 Symmetric encryption systems ...10

2.2.4.3 Symmetric encryption algorithms ..11

2.2.4.4 Asymmetric encryption systems ...12

2.2.4.5 Asymmetric encryption algorithms ..13

2.2.5 Key Management ..13

2.2.6 Pseudo random bit generation ...14

2.3 Traffic Flow Confidentiality ...15

2.3.1 Security mechanisms for traffic flow confidentiality ...16

2.3.1.1 Confidentiality provision through data padding ..16

2.3.1.2 Confidentiality provision through dummy events ...16

2.3.1.3 Examples ...16

2.3.2 Analogies between network traffic and structured data ..17

2.4 Data integrity ...18

2.4.1 Types of data integrity services ...19

2.4.2 Data integrity mechanisms ...19

2.4.3 Data integrity algorithms ..20

2.5 Authentication ..21

2.5.1 Authentication mechanisms ...22

2.5.2 Authentication protocols ..22

2.6 Access Control ...23

2.7 Plausible Deniability ..24
v

3 Introduction to XML ..27

3.1 XML v1.0 ..28

3.2 XML Namespaces ...31

3.2.1 An example with namespaces ..31

3.2.2 Namespaces for Attributes ...32

3.2.3 Redeclaring namespaces and undeclaring default namespaces32

3.2.4 Special namespaces ...33

3.2.5 Relative URLs in namespaces ...33

3.2.6 Namespaces 1.1 ...33

3.3 XML InfoSet ...34

3.4 Document Object Model (DOM) ..35

3.5 XPath ...36

3.5.1 XPath axes ...37

3.5.1.1 self axis ...37

3.5.1.2 Parent axis ..38

3.5.1.3 Ancestor axis ...38

3.5.1.4 Ancestor-or-self axis ..38

3.5.1.5 Child axis ..39

3.5.1.6 Descendant axis ..39

3.5.1.7 Descendant-or-self axis ...39

3.5.1.8 Preceding-sibling axis ...40

3.5.1.9 Following-sibling axis ..40

3.5.1.10 Preceding axis ...41

3.5.1.11 Following axis ...41

3.5.1.12 Attribute axis ...41

3.5.1.13 Namespace axis ...41

3.5.1.14 Partitioning of the document using axes ..42

3.5.2 XPath examples ...42

3.5.2.1 Example 1 ...42

3.5.2.2 Example 2 ...43

3.6 Differences between the DOM2 and XPath data model ...44
vi

4 Canonical XML and XML Signature ..47

4.1 Canonical XML ...47

4.1.1 Document subsets ...49

4.1.2 Applications of Canonical XML ...51

4.1.2.1 XML Signature ...51

4.1.2.2 XML Encryption ...51

4.1.2.3 Comparison of XML documents or fragments ..51

4.2 XML Signature ..52

4.2.1 Introduction ..52

4.2.2 Enveloping, enveloped and detached signatures ..53

4.2.2.1 Enveloping signatures ..53

4.2.2.2 Detached signatures ..53

4.2.2.3 Enveloped signatures ...54

4.2.2.4 Comparison ...54

4.2.3 References ...57

4.2.3.1 Basics ..57

4.2.3.2 De-referencing URI attributes ..57

4.2.3.3 Transformation of resources using Transform elements59

4.2.4 SignedInfo element ..61

4.2.4.1 SignatureValue element ...63

4.2.4.2 Complex transforms vs. multiple references ..63

4.2.5 Key Management using the KeyInfo element ...64

4.2.6 Embedded objects for enveloping signatures - the Object element66
vii

5 Confidentiality Systems – State of the Art ..67

5.1 Encryption of Unstructured Data ..67

5.1.1 Example: IP Security Protocol (IPSec) ...67

5.1.2 Example: Transport Layer Security (TLS) ...67

5.1.3 Example: S/MIME ..67

5.1.4 Example: OpenPGP ..68

5.2 Selective Field Confidentiality ...68

5.3 W3C XML Encryption ...69

5.3.1 Introduction ..69

5.3.2 Encryption for multiple recipients ...71

5.3.2.1 Encrypting the same content ...71

5.3.2.2 Super-Encryption ..72

5.3.3 Serialization of XML for XML Encryption ..73

5.3.4 An Example of XML Encryption ..74

5.3.5 Ciphertext Locations ..75

5.3.6 XML Encryption Key Management ..76

5.3.7 XML Key Management ..77

5.4 Information Disclosure in Encryption Systems ...77

5.5 XML Access Control ...79

5.5.1 Introduction ..79

5.5.2 The invisible ancestors problem ..80

5.5.2.1 The Schema-friendly solution ..81

5.5.2.2 Real Invisible Ancestors ..83

5.5.3 Information disclosure ..83

5.6 Summary ...84
viii

6 Requirements for the New Confidentiality System ..85

7 XML Pool Encryption ...87

7.1 Basic mechanism ...87

7.2 Terms used in this chapter ...87

7.2.1 Document states ..87

7.2.2 Node types ...87

7.2.3 Components of the pool encryption procedure. ...89

7.2.4 Components of the pool decryption procedure ..90

7.2.5 Terms about the labeling procedure ..90

7.3 Concepts and design principles ..90

7.3.1 Removing nodes from the tree ...90

7.3.2 Pool Key Management ..94

7.3.3 Dummy nodes ...94

7.4 Representing the position of a node in the tree ..94

7.4.1 Simple approaches ..94

7.4.2 “Adjacency List Mode” (ALM) ...95

7.4.2.1 Overview ...95

7.4.2.2 Analogy between the ALM and the event stream of an XML parser98

7.4.2.3 Storing ALM labels ...98

7.5 “Modified Adjacency List Mode” (MALM) ..102

7.5.1 A MALM example ...103

7.5.2 Definitions ...105

7.5.3 Interval generators ..107

7.5.4 Stepsize S ...109

7.5.4.1 Enabling the tree labeling process ...109

7.5.4.2 Hiding dependencies between nodes ...109

7.5.4.3 Length of encoded labels ...112

7.6 Key Management ..113

7.6.1 Overview ..113

7.6.2 Relationship between encrypted nodes and node keys114

7.6.3 Collaboration of users ...116

7.7 XML Structure ..117

7.8 Dummy Nodes ...118

7.9 Syntax for the algorithms ...119
ix

7.10 Node selection procedure ..120

7.10.1 Overview ..120

7.10.2 Algorithm ..120

7.10.3 Example ..121

7.11 Pool encryption procedure ..121

7.11.1 Labelling procedure ..122

7.11.1.1 Overview ...122

7.11.1.2 Algorithm ..122

7.11.2 Pruning procedure ..125

7.11.2.1 Overview ...125

7.11.2.2 Algorithm ..125

7.11.3 Node encryption procedure ...126

7.11.3.1 Overview ...126

7.11.3.2 Algorithm ..126

7.12 Pool decryption procedure ..127

7.12.1 Node decryption procedure ...128

7.12.1.1 Overview ...128

7.12.1.2 Algorithm ..128

7.12.2 Node restoration procedure ..129

7.12.2.1 Overview ...129

7.12.2.2 Algorithms for the node restoration ...129

7.13 A restoration example ..136

7.13.1 First node restoration example ..137

7.13.2 Second node restoration example ..138

7.13.3 Third node restoration example ..139
x

7.14 Encryption granularity ...140

7.14.1 Document information item ...140

7.14.2 Comment information items ..141

7.14.3 Processing Instruction information items ..141

7.14.4 Element information items ...141

7.14.4.1 Attribute handling ..142

7.14.4.2 Namespace handling ...142

7.14.5 Attribute information items ..143

7.14.6 Namespace information items ..144

7.14.7 Character information items ..144

7.14.8 Document Type Decl information items ...144

7.14.9 Unexpanded Entity Reference information items ..144

7.14.10 Unparsed Entity information items ...145

7.14.11 Notation information items ..145

7.15 Correctness of the Modified Adjacency List Mode ...145

7.15.1 Introduction ..145

7.15.2 Proof of correctness ..146

7.15.3 Proof of non-ambiguous reconstruction ..147

7.16 Editing documents after encryption ..148

7.16.1 Destroying the label mechanism ..148

7.16.2 Enabling editing in public documents ..149

7.16.3 Trade-off between editability and structure awareness151

7.17 Schema validity and encryption ..151

8 Properties of XML Pool Encryption ...153

8.1 Confidentiality of arbitrary nodes ...153

8.2 Confidentiality of the original structure ..154

8.3 Confidentiality of the total number of confidential nodes ..154

8.4 Plausible deniability ...155

9 Conclusions ..157

9.1 Summary ...157

9.2 Future work ...157
xi

Annex: Implementation ..159

A.1 Implementation of XML Pool Encryption ..159

A.2 Syntax of pool encryption ...161

A.2.1 EncryptedPool ...162

A.2.2 EncryptedNodes ...162

A.2.3 EncryptedNode ..162

A.2.4 KeyCollections ...162

A.2.5 EncryptedKeyCollection ...162

A.2.6 KeyCollection ...163

A.2.7 Serialization format for confidential nodes ..163

A.3 The Apache XML Signature Implementation ...164

A.3.1 org.apache.xml.security.* package ..164

A.3.2 org.apache.xml.security.algorithm.**.* Package ..165

A.3.3 org.apache.xml.security.c14n.**.* Package ...167

A.3.4 org.apache.xml.security.keys.(content).* package ..168

A.3.5 org.apache.xml.security.keys.keyresolver.* package ..169

A.3.6 org.apache.xml.security.keys.storage.* package ..171

A.3.7 org.apache.xml.security.signature.* package ...172

A.3.8 org.apache.xml.security.transforms.* package ..173

A.3.9 org.apache.xml.security.utils.* package ...175

A.3.10 org.apache.xml.security.utils.resolver.**.* package ...177

A.3.11 exceptions of the org.apache.xml.security hierarchy ..178

References ..179
xii

List of figures

Figure 2-1: Generic encryption system ... 9
Figure 2-2: Example of a symmetric encryption system .. 10
Figure 2-3: Example of an asymmetric encryption system ... 12
Figure 2-4: Data integrity mechanisms ... 19
Figure 2-5: Fundamental access control functions .. 23

Figure 3-1: Sample XML document structure .. 29
Figure 3-2: Screenshot from the tool “XML Spy Editor” .. 30
Figure 3-3: Screenshot from the Microsoft Internet Explorer Browser 30
Figure 3-4: The sample document and the self axis .. 37
Figure 3-5: parent, ancestor and ancestor-or-self axes ... 38
Figure 3-6: child, descendant and descendant-or-self axes ... 39
Figure 3-7: preceding-sibling and following-sibling axes .. 40
Figure 3-8: preceding and following axes ... 41
Figure 3-9: Partitioning using XPath axes ... 42

Figure 4-1: Canonicalizing a document subset .. 49
Figure 4-2: Namespace inheritance in document subsets ... 50
Figure 4-3: Hash value generation for XML Signature (simplified) ... 52
Figure 4-4: Enveloped, enveloping and detached signatures ... 55
Figure 4-5: Signature value generation for XML Signature .. 62
Figure 4-6: Reference design .. 64

Figure 5-1: W3C XML Encryption modes .. 70
Figure 5-2: W3C Super-Encryption: Encrypting <EncryptedData> .. 72
Figure 5-3: Reference from data to key .. 76
Figure 5-4: Reference from key to data .. 76
Figure 5-5: No reference between data and key .. 77
Figure 5-6: XML Access Control pruning process ... 80

Figure 7-1: Overview to the procedures .. 89
Figure 7-2: Plaintext document with confidential nodes ... 91
Figure 7-3: Public document (with pool of encrypted nodes) .. 92
Figure 7-4: Decrypted document (after partial decryption) .. 92
Figure 7-5: Pool encryption – general overview ... 93
Figure 7-6: Sample tree for the “Adjacency List Mode” ... 95
Figure 7-7: Sample ranges for the “Adjacency List Mode” .. 96
Figure 7-8: Mapping between ALM values and XML Markup ... 98
Figure 7-9: Labeled plaintext document (using ALM) ... 99
Figure 7-10: Public document with ALM label values after pruning procedure 100
Figure 7-11: Hiding values in the gap ... 103
Figure 7-12: Plaintext document after labeling procedure (Modified ALM) 104
Figure 7-13: Public document after pruning procedure (Modified ALM) 105
xiii

Figure 7-14: Two interstitial sequences in the tree ... 106
Figure 7-15: Interstitial sequence ... 107
Figure 7-16: IntervalGenerator algorithm ... 108
Figure 7-17: No space for interstitial nodes .. 109
Figure 7-18: Insecurely labeled document with possible node positions 111
Figure 7-19: Securely labeled document with possible node positions 111
Figure 7-20: Interstitial value representation .. 112
Figure 7-21: Multiple KeyCollections and the pool of encrypted nodes 115
Figure 7-22: XML Pool Encryption structure ... 117
Figure 7-23: XML Pool Encryption procedures ... 120
Figure 7-24: TreeLabeler.process algorithm ... 123
Figure 7-25: TreeLabeler.label algorithm ... 124
Figure 7-26: Pruning the tree ... 125
Figure 7-27: fosterChildrenToGrandparents example ... 125
Figure 7-28: fosterChildrenToGrandparents algorithm ... 126
Figure 7-29: getNearestAncestor algorithm ... 131
Figure 7-30: parentalizeOrphan example ... 132
Figure 7-31: Detailed parentalizeOrphan example .. 133
Figure 7-32: parentalizeOrphan algorithm ... 133
Figure 7-33: restoreNode algorithm ... 134
Figure 7-34: Input to the node restoration procedure .. 136
Figure 7-35: Re-labeled public document .. 136
Figure 7-36: First node restoration example ... 137
Figure 7-37: Second node restoration example .. 138
Figure 7-38: Third node restoration example ... 139
Figure 7-39: Result of the node restoration procedure examples ... 140
Figure 7-40: Removing the node encryption from the process .. 145
Figure 7-41: Different labeling after insertion of node .. 148
Figure 7-42: Range mismatch ... 149
Figure 7-43: Editable region identification ... 150

Figure A-1: Classes for XML Pool Encryption .. 159
Figure A-2: XML Skeleton of an EncryptedPool ... 161
Figure A-3: XML Skeleton of KeyCollection ... 163
Figure A-4: The org.apache.xml.security.* package .. 164
Figure A-5: The org.apache.xml.security.algorithm.**.* package ... 165
Figure A-6: The org.apache.xml.security.algorithm.**.* Package ... 167
Figure A-7: The org.apache.xml.security.keys.(content).* package 168
Figure A-8: The org.apache.xml.security.keys.keyresolver.* package 169
Figure A-9: The org.apache.xml.security.keys.storage.* package .. 171
Figure A-10: The org.apache.xml.security.keys.signature.* package 172
Figure A-11: The org.apache.xml.security.transforms.* package .. 173
Figure A-12: The org.apache.xml.security.utils.* package .. 175
Figure A-13: The org.apache.xml.security.utils.resolver.**.* package 177
Figure A-14: The exceptions of the org.apache.xml.security hierarchy 178
xiv

1 Introduction
During the last years, the eXtensible Markup Language (XML) has been widely
adopted as ‘lingua franca’ for the Internet. The World Wide Web Consortium
(W3C) created a whole set of specifications surrounding the basic XML v1.0
language specification.
These new specifications include the reformulation of HTML using XML
(XHTML), vector graphics formats (Scalable Vector Graphics SVG), metadata
formats for policy documents, e.g. the Platform for Privacy Preferences
Project (P3P), multimedia languages (SMIL) and control languages for voice
recognition systems (VoiceXML). The Simple Object Access Protocol (SOAP)
or XML Protocol (XMLP) enables the transport of documents through the
Internet and remote procedure calls (SOAP-RPC).
Besides the application level languages, the W3C created a framework of base
specifications, e.g. linking languages (XLink, XPointer and XPath), transforma-
tion languages (XSLT) and security specifications.
These security specifications include the “W3C XML Signature Syntax and
Processing” Recommendation for digital signatures, the “W3C XML Encryp-
tion Syntax and Processing” Recommendation for the encryption of XML doc-
uments and the “XML Key Management Specification” to define interfaces to
Public Key Infrastructures via XML based protocols. Both W3C XML Signature
and W3C XML Encryption are finished standardization activities, i.e. the work-
ing groups have delivered a Technical Recommendation.
An XML document is a tree structure, i.e. it consists of XML nodes which form
the tree. Each element node in the document is the root of a subtree. The leaf
element nodes are subtrees which consist of a single element node. An arbi-
trary node set is an arbitrary compounded set of nodes without constraints to
the composition, i.e. the presence of a node in the node set does not imply
that the node’s child nodes are also present in the subset.
The XML Signature Recommendation enables users to sign parts of an XML
document, including the whole document tree, subtrees in the document, or
arbitrary node sets.
The XML Encryption Recommendation enables users to encrypt parts of an
XML document, including the whole document tree or subtrees in the docu-
ment. The design of W3C XML Encryption does not allow the encryption of
arbitrary node sets. The encryption of a confidential node implies that the
child nodes of this confidential node are encrypted, too.
XML Access Control Processors are systems which enforce access control pol-
icies for XML documents and parts thereof. These systems allow the definition
of fine-grained access control policies, i.e. to define an access control policy
for each node in an XML document’s tree. For instance, XML Access Control
policies can define that the access to a particular element node is denied
while access to the child nodes of this element node is permitted. Therefore,
XML Access Control enables the access control for arbitrary node sets in an
XML document.
1

1 Introduction
Table 1-1 shows which security mechanism can be used to provide a security
service for a given XML structure:

The above table indicates that there exists no confidentiality mechanism for
arbitrary node sets.
The aim of this thesis is to develop a confidentiality mechanism for arbitrary
node sets, which does not require an online access control processor to
enforce given confidentiality requirements. The confidentiality mechanism
developed in this thesis is called “XML Pool Encryption”.
XML Pool Encryption is a cryptographic system which is able to encrypt arbi-
trary confidential nodes in an XML document. The problem is that the encryp-
tion of a single node has dramatic impact on its child nodes, as the context of
the child node changes. XML Pool Encryption takes confidential nodes out of
the document, encrypts them and collects the encrypted nodes in a so called
pool. The users of the system can decrypt the encrypted nodes and restore
them so that the original document structure is rebuilt.
The main task during the development of XML Pool Encryption was to find a
sufficient description of a confidential node’s position, so that the document
can be restored correctly.
The idea to create XML Pool Encryption appeared during the author’s work
on standardization and implementation of the W3C XML Signature and W3C
XML Encryption specifications.
The structure of this thesis is as follows:
Chapters 2 to 5 contain an introduction to the background of the problem.
Chapter 2 introduces general concepts of security services and security mech-
anisms, including data confidentiality, traffic flow confidentiality, integrity,
authentication, access control and plausible deniability.
Chapter 3 gives an introduces to the relevant XML standards, including
XML v1.0, XML Namespaces, the XML Information Set, the Document Object
Model DOM and the XML Path language XPath.
Chapter 4 describes Canonical XML and the W3C XML Signature Recommen-
dation as an example how security mechanisms and XML are combined to
provide integrity and authentication.
Chapter 5 introduces current confidentiality mechanisms, including W3C
Encryption and XML Access Control.
Chapter 6 is the motivation for the work of this thesis, summarizing the rele-
vant properties of W3C XML Encryption and XML Access Control and defin-
ing requirements for XML Pool Encryption.

Security
mechanism

full XML
document

subtrees of an
XML document

Arbitrary XML
node sets

integrity and authentication W3C XML Signature W3C XML Signature W3C XML Signature

confidentiality W3C XML Encryption W3C XML Encryption

access control XML Access Control XML Access Control XML Access Control

Table 1-1: Security mechanisms by secured data
2

Chapter 7 develops the XML Pool Encryption system. A sketch of the basic
idea, the introduction of relevant terms and the concepts and design princi-
ples can be found at the beginning of chapter 7. After this introduction,
chapter 7 introduces the Adjacency List Node to represent trees and defines
the modification of the Adjacency List Mode to enable XML Pool Encryption.
The exact procedures to perform encryption and decryption are described.
After proving the correctness of the encryption and decryption process, key
management issues and encryption details are defined. The introduction of a
mechanism for traffic flow confidentiality and an approach to the editing of
encrypted documents concludes the chapter.
Chapter 8 describes properties of XML Pool Encryption as a comparison
between the results of chapter 7 with the requirements defined in chapter 6.
Chapter 9 summarizes this work.
Appendix A contains a description of the XML Pool Encryption and XML Sig-
nature implementations.
3

1 Introduction
4

2 IT Security Services and
Mechanisms

In the definition of computer systems and networks, usually the term “entity”
is used to refer to persons as well as computer processes running on behalf of
a person or even computer processes which run without human interaction.
While humans process information, computer systems process data which is
a particular representation of information. For instance, a number can be
represented in the binary form using a bit string of a defined length. Other
information is represented by sequences which are octet strings in a com-
puter system, which are encoded in a defined character set.

bit: One of the two symbols ‘0’ or ‘1’.

bit string: An ordered sequence of bits.

octet: A bit string of length 8.

octet string: An ordered sequence of octets.

block: String of bits of a defined length.

The use of IT systems introduces risks and threats which have to be
addressed. These risks can be managed by reducing the possible impact of a
given threat or by reducing the probability of occurrence. Reducing the prob-
ability is usually done by using security services. “Security services ensure
adequate security of the systems or of data transfers” [ITU-T X.800 | ISO 7498-
2] and define the properties and functionality of security mechanisms, which
address the threat.
In the following sections, the relevant security definitions and concepts are
summarized.

Transmission versus storage. This thesis is about confidentiality for docu-
ments. A document may be transmitted over a communication channel (e.g.
the Internet) or it may be stored on a storage medium (e.g. a hard drive or a
database system). Transmitting a document via a communication channel lets
the document travel in space; storing the document on a medium and loading
it later lets the document travel in time.
Unless otherwise noted, both cases are considered to be equal in this thesis:
for example, the term ‘sender’ refers either to the entity which sends the doc-
ument via the communication channel or to the entity which stores the docu-
ment on the storage medium.
5

2 IT Security Services and Mechanisms
2.1 Security services
The “ISO Security Architecture for OSI Systems” defines the term “security
service” as follows:

security service: “A service, provided by a layer of communicating open
systems, which ensures adequate security of the systems or of data trans-
fers.” [ITU-T X.800 | ISO 7498-2]

In the following sections, different security properties are introduced, e.g.
‘confidentiality’, ‘data integrity’ or ‘data origin authentication’. For each of
these properties, a corresponding security service exists which provides enti-
ties with a service ensuring the property:

confidentiality security service: A service, provided by a layer of com-
municating open systems, which ensures adequate confidentiality of sys-
tems or of data transfers. (For the definition of ‘confidentiality’,
see page 7).

traffic flow confidentiality security service: A service, provided by
a layer of communicating open systems, which ensures adequate traffic
flow confidentiality of data transfers. (For the definition of ‘traffic flow
confidentiality’, please refer to page 15).

data integrity security service: A service, provided by a layer of com-
municating open systems, which ensures adequate data integrity of sys-
tems or of data transfers. (For the definition of ‘data integrity’, please
refer to page 18).

peer entity authentication security service: A service, provided by
a layer of communicating open systems, which ensures adequate peer en-
tity authentication of systems or of data transfers. (For the definition of
‘peer entity authentication’, please refer to page 21).

data origin authentication security service: A service, provided by
a layer of communicating open systems, which ensures adequate data or-
igin authentication of data transfers. (For the definition of ‘data origin au-
thentication’, please refer to page 21).

2.2 Confidentiality
When people (or more generally “entities”) write down information, some-
times they need protection of the information so that it cannot be read by
everybody. Therefore, methods to hide this information and to reveal it only
to authorized people are needed.
6

2.2 Confidentiality
2.2.1 Definitions
The “ISO Security Architecture” [ITU-T X.800 | ISO 7498-2] and the “ISO Con-
fidentiality framework” [ITU-T X.814 | ISO 10181-5] contain various useful
definitions of confidentiality and related terms:

confidentiality: “The property that information is not made available or
disclosed to unauthorized individuals, entities, or processes.” [ITU-T
X.800 | ISO 7498-2]

plaintext: “Intelligible data, the semantic content of which is available.”
[ITU-T X.800 | ISO 7498-2] The terms ‘cleartext’ and ‘plaintext’ are used
synonymous throughout this document.

ciphertext: “Data produced through the use of encryption. The semantic
content of the resulting data is not available.” [ITU-T X.800 | ISO 7498-2]

confidentiality protected environment: “An environment which
prevents unauthorized information disclosure either by preventing unau-
thorized data inspection or by preventing unauthorized derivation of sen-
sitive information through data inspection. Sensitive information may
include some or all of the data attributes (e.g. value, size, or existence).”
[ITU-T X.814 | ISO 10181-5]

confidentiality protected data: “Data within a confidentiality protect-
ed environment. A confidentiality protected environment may also pro-
tect some (or all) of the attributes of the confidentiality protected data.”
[ITU-T X.814 | ISO 10181-5]

confidentiality protected information: “Information all of whose
concrete encoding (i.e. data) are confidentiality protected.” [ITU-T X.814
| ISO 10181-5]

The first part of the definition for the confidentiality protected environment is
very intuitive: inspection of the plaintext by unauthorized entities is to be for-
bidden.
It can be necessary to protect attributes associated with the plaintext, rather
than the only plaintext itself. Such attributes include the plaintext’s size, its
position in a document or even the existence of the plaintext. For instance,
the existence of a particular file in a storage system or the existence of a com-
munication connection between two entities can disclose information to an
attacker. Preventing the disclosure of the existence of communications is
called ‘traffic flow confidentiality’ and is discussed in “Traffic Flow Confidenti-
ality” on page 15.
The size of the data can be also confidential. The number of octets of a pro-
tected file in a storage system or the transferred amount of data between two
entities also discloses information to the attacker.
7

2 IT Security Services and Mechanisms
2.2.2 Ways to disclose information
In an information processing system, information is represented by data items
which are stored or processed in the system or transferred between system
entities. Disclosure of sensitive information happens by deriving it from the
data. This can happen in various ways [ITU-T X.800 | ISO 7498-2]:

❏ by reading the value of the data, i.e. direct access to the plaintext octets,

❏ by having access to attributes of the data, e.g.

❍ the existence (or non-existence) of the data,

❍ the size of the data or duration of transfer,

❍ the identity of the data owner (or entities involved in a transfer) or

❍ relevant time attributes, e.g. date of creation, date of last update,
date of last read access or time of transfer

❏ by deriving information from context information, i.e. other data object
associated with the data in question,

❏ by observing the dynamic variations of the representation and

❏ by observing the reaction of the entities involved in a communication
after sending or receiving a given piece of data.

2.2.3 Types of confidentiality security mechanisms
A confidentiality security mechanism provides protection against the unau-
thorized disclosure of information. The “ISO Confidentiality Framework”
defines two general types of confidentiality security mechanisms:

1. The read access to the data can be restricted and prevented.

❍ Access restrictions are usually enforced by access control mecha-
nisms, defined in the “ISO Access control framework” [ITU-T
X.812 | ISO 10181-3]. The access control mechanism grants access
to the information only to authorized entities.

❍ Access prevention can be done using physical access prevention to
storage locations and transfer mediums, e.g. through physically
shielded cables, tamper resistant (hardened) smart cards or secu-
rity guards to protect entry to the information processing build-
ings.

2. A transformation algorithm and the so called hiding confidentiality
information (HCI) are used to transform the plaintext data into a form
which is only accessible to those who possess the corresponding criti-
cal revealing confidentiality information (RCI). Such transformations
include:
8

2.2 Confidentiality
❍ Encryption (also called encipherment) mechanisms which render
the value of the data (the semantics) unreadable.

❍ Data padding mechanisms which hide the size of the data. In
order to be effective, a second confidentiality security mechanism
(such as encryption) is necessary to prevent an attacker from dis-
tinguishing plaintext data from padding data.

❍ Spread spectrum mechanisms can be used to hide the existence of
a communication channel.

❍ Quantum cryptography is a relatively young discipline which uti-
lizes the ‘Heisenberg uncertainty principle of quantum mechan-
ics’. Quantum cryptography creates communication channels in
which an eavesdropper destroys the transmitted information with
any attempt to eavesdrop the channel. This enables the communi-
cating entities involved in a quantum based communication to
detect the presence of the attacker.

2.2.4 Cryptographic algorithms for confidentiality security
mechanisms

Throughout this document, two confidentiality security mechanisms will be
dominant: access control and encryption. Access control will be described in
a later section.

2.2.4.1 ENCRYPTION MECHANISMS

Encryption mechanisms are transformations which transform plaintext into
ciphertext and vice versa. Plaintext is the intelligible data (readable content)
that has to be rendered unreadable. Ciphertext is the encrypted plaintext for
which no semantic content is available. An encryption mechanism transforms
plaintext into ciphertext. A decryption mechanism transforms ciphertext
back into plaintext.
In order to be able to re-use a particular algorithm in many systems, the algo-
rithm is parameterized by a key.

key: “A sequence of symbols that controls the operations of encryption
and decryption.” [ITU-T X.800 | ISO 7498-2] The ISO standard uses the

Figure 2-1: Generic encryption system

Encryptor Decryptor

Plaintext P Plaintext PCiphertext C

Encryption Key K Decryption Key K-1

Encryption E Decryption D
9

2 IT Security Services and Mechanisms
terms ‘encipherment’ and ‘decipherment’, but for consistency of this
document, encryption and decryption are used.

For encrypting a plaintext , the encryption algorithm is parameterized

with a confidentiality encryption key . The ciphertext is decrypted using

the confidentiality decryption key .

Encrypting a plaintext under the key produces the ciphertext and is

denoted as . The decryption of under the key reproduced

the plaintext and is denoted as .

Cryptography knows two different types of encryption systems: symmetric
encryption systems and asymmetric encryption systems:

2.2.4.2 SYMMETRIC ENCRYPTION SYSTEMS

symmetric encryption system: “Encryption system based on symmet-
ric cryptographic techniques that use the same secret key for both the en-
cryption and decryption algorithms”. [ISO 18033-1]

symmetric cryptographic technique: “Cryptographic technique that
uses a shared secret key.
(Examples of symmetric cryptographic techniques include symmetric ci-
phers and Message Authentication Codes (MACs). In a symmetric cipher,
the same secret key is used to encrypt and decrypt data. In a MAC
scheme, the same secret key is used to generate and verify MACs.)” [ISO
18033-1]

Given these definitions, a symmetric encryption system has the property that
both the encryption key and the decryption key have the same value, i.e.

. Symmetric keys are also called secret key.

secret key: “A key that is used with a symmetric cryptographic algorithm.
Possession of a secret key is restricted (usually to two entities).” [ITU-T
X.810 | ISO 10181-1]

Figure 2-2: Example of a symmetric encryption system

P E
K C

K 1–

P K C
C EK P()= C K 1–

P P E
K 1– C()=

K K 1–=

Encryptor Decryptor

Plaintext P Plaintext PEncryption E

Secret key transport through a confidentiality and integrity
protected channel with peer entity authentication

Ciphertext transfer

Secret key

Symmetric key K
generation

Decryption D
10

2.2 Confidentiality
symmetric cryptographic algorithm: “An algorithm for performing
encryption or the corresponding algorithm for performing decryption in
which the same key is required for both encryption and decryption.”
[ITU-T X.810 | ISO 10181-1]

The secret key can be generated in various ways:

❏ by the encrypting entity (called encryptor) like shown in figure 2-2,

❏ by the decryptor,

❏ the key is generated by a trusted third party (TTP) like a key distribution
center (KDC) or

❏ it can be derived from parameters in a key agreement protocol which is
performed by both encryptor and decryptor.

If the key is not computed using a key agreement protocol, the key must be
transported through a secure channel which is confidentiality and integrity
protected. Additionally, the recipient(s) of the secret key must know the
source of the key, i.e. data origin authentication for the transported key is nec-
essary.
The ciphertext itself can be transported through an unprotected channel.

2.2.4.3 SYMMETRIC ENCRYPTION ALGORITHMS

Algorithms which perform symmetric encryption are grouped into two
classes:

❏ block ciphers and

❏ stream ciphers.

A block cipher processes blocks of plaintext to create blocks of ciphertext. A
block is a string of bits. Such a block cipher is called bit block cipher.
Typical algorithms which are used in today’s systems are

❏ 3DES (Triple DES (Data Encryption Standard), also known as TDEA – Tri-
ple Data Encryption Algorithm),

❏ IDEA (International Data Encryption Algorithm),

❏ AES (Advanced Encryption Standard)

❏ and various other block ciphers like the other AES candidates (e.g. Blow-
fish or RC6).

The plaintext bit sequence is segmented into bit blocks, as the block cipher
needs bit as input. To allow cases where the input length is not a multiple
of bit, a padding mechanism is usually used with a block cipher. The pad-
ding algorithm defines an unambiguous way how each plaintext is extended
to a length of a multiple of bit. This is even done if the length of the plain-
text is already a multiple of bit. So if a padding mechanism is used, the
length of the ciphertext is larger than the length of the plaintext. After

n n

n
n

n

n
n

11

2 IT Security Services and Mechanisms
decrypting with the block cipher, the padded bits are removed from the
decrypted data.
Mechanisms closely related to block ciphers are modes of operation (MoO or
modes). Modes define how the inputs and outputs of consecutive block
cipher operations are combined. This is done to ensure that the same plain-
text block results in different ciphertext blocks throughout the ciphertext
stream and to chain the blocks together to prevent substitution attacks.
A stream cipher combines a sequence of plaintext symbols with a sequence
of keystream symbols, one symbol at a time, and using an invertible function
(for single bits as a symbol, the function is usually an exclusive or between
keystream bit and plaintext bit). Typical stream cipher algorithms are RC4, A5
are n bit block ciphers which operate in a specific mode to create a key sym-
bol stream.

2.2.4.4 ASYMMETRIC ENCRYPTION SYSTEMS

asymmetric encryption system: “Encryption system based on asym-
metric cryptographic techniques whose public transformation is used for
encipherment and whose private transformation is used for decipher-
ment.” [ISO/IEC 9798-1]

asymmetric cryptographic technique: “Cryptographic technique
that uses two related transformations, a public transformation (defined
by the public key) and a private transformation (defined by the private
key). The two transformations have the property that, given the public
transformation, it is computationally infeasible to derive the private trans-
formation.” [ISO/IEC 11770]

In an asymmetric encryption system, the encryption key (also called pub-
lic key) and the decryption key (also called private key) have distinct val-
ues, but these both values do have a mathematical relationship which is
defined by the underlying cryptographic algorithm:

Figure 2-3: Example of an asymmetric encryption system

K
K 1–

Encryptor Decryptor

Plaintext P Plaintext PEncryption E

Integrity protected and
authentic channel Key pair generation

K and K-1

Decryption D
Ciphertext transfer

Public key K
Public key

Private key K-1
12

2.2 Confidentiality
private key: “A key that is used with an asymmetric cryptographic algo-
rithm and whose possession is restricted (usually to only one entity).”
[ITU-T X.810 | ISO 10181-1]

public key: “A key that is used with an asymmetric cryptographic algo-
rithm and that can be made publicly available.” [ITU-T X.810 | ISO 10181-
1]

A key pair consists of a public and the corresponding private key. The genera-
tion of a key pair can be performed by different parties:

❏ The key pair can be generated by the decryptor.
In that case, the decryptor can publish the public key in a directory ser-
vice or directly send the public key to the encryptor. This case is shown
in figure 2-3 on page 12. Note that the channel for transporting the
public key does not have to be confidentiality protected.

❏ The key pair can be generated by a trusted third party.
In that case, the private key must be transmitted to the decryptor via a
confidentiality protected channel.

The private key must be protected by the decryptor. Regardless which entity
undertakes the key pair generation, the public key must be made available to
the encryptor. The encryptor must be confident that the public key belongs
to the decryptor. This can be achieved using digital certificates (if a trusted
third party is available) or by transport through integrity protected channels
with data origin authentication enabled.

2.2.4.5 ASYMMETRIC ENCRYPTION ALGORITHMS

The most common used asymmetric encryption algorithm is the RSA algo-
rithm, named after its inventors Rivest, Shamir and Adleman [RSA78]. RSA is
based on the difficulty of factoring large integers.

2.2.5 Key Management

key management: “The generation, storage, distribution, deletion, ar-
chiving and application of keys in accordance with a security policy.”
[ITU-T X.800 | ISO 7498-2]

In this section, the generation and distribution of keys is described. The
encryption system examples in figure 2-2 on page 10 and figure 2-3 on page
12 illustrate examples on where keys can be generated and how they can be
distributed.
The example in figure 2-2 implicitly assumes that (1) the sender generates the
symmetric secret key and that (2) a confidentiality protected, integrity pro-
tected and peer entity authentication enabled communication channel exists
between both parties.
13

2 IT Security Services and Mechanisms
key establishment: “A process or protocol whereby a shared secret be-
comes available to two or more parties, for subsequent cryptographic
use. Key establishment may be broadly subdivided into ‘key transport’
and ‘key agreement’.” [MOV96]

key transport: “A key transport protocol or mechanism is a key establish-
ment technique where one party creates or otherwise obtains a secret
value, and securely transfers it to the other(s).” [MOV96]

Both example figures do illustrate key transport mechanisms. In figure 2-2 on
page 10, a secret key is generated by one party (the sender in the example).
This key is securely transferred to the other party (the receiver). This secure
transfer could be done by encrypting the secret key under the public key of
the receiver. RSA-based key transport schemes like RSAES-PKCS1-v1_5 and
RSAES-OAEP-ENCRYPT described in [KaSt98] fall into this category.

key agreement: “A key agreement protocol or mechanism is a key estab-
lishment technique in which a shared secret is derived by (or more) par-
ties as a function of information contributed by, or associated with, each
of these, (ideally) such that no party can predetermine the resulting val-
ue.” [MOV96]

Key agreement schemes can be Diffie-Hellman based protocols like described
in [Resc99] or based on symmetric techniques, e.g. like the Kerberos system
[KoNe93].

2.2.6 Pseudo random bit generation
Many cryptographic algorithms require random bits, e.g. for the generation of
keys like secret keys or as time variant parameters for the use during crypto-
graphic protocols (nonces). A random number generator (RNG) is useable for
cryptographic use if the generated random bits cannot reproduced other than
by chance. Additionally, the generated bits must withstand commonly estab-
lished statistical tests.
The ISO Project 1.27.31 currently (May 2003) works on a not yet finished stan-
dard ISO/IEC 18031 “Information technology – Security techniques – Random
bit generation”. This draft document defines the following terms:

computationally infeasible: “A problem, which is deemed impractical
to solve. Theoretically, this means requiring computational resources,
growing faster than any polynomial in size of the input. Pragmatically, it
means requiring computational resources , where is a sufficiently
large security parameter of a cryptographic system.”

deterministic: “This term defines a characteristic of an algorithm. Given
a same set input will result in a known output.”

2s s
14

2.3 Traffic Flow Confidentiality
non-deterministic bit stream: “For the purposes of this standard, non-
deterministic is defined as an output stream of bits produced as a result
of some unpredictable phenomena or activity.”

pseudo-random bit generator: “A deterministic algorithm which
when given some form of a bit sequence length outputs a sequence of
bits of length , computationally infeasible to distinguish from true
random bits.”

random bit generator: “A device or algorithm that produces a stream of
bits where those sequences are statistically close to having a uniform dis-
tribution.”

random number: A sub-string of bits that have been converted to some
interpretable number in a predetermined interval (e.g., equals

).

A random number generator requires a physical source of randomness, e.g. a
radioactive radiation source or another quantifiable physical phenomenon.
Building a random source using solid physical sources is very expensive; for
that reason, current systems gather random bits from multiple measurable
events (timing of user keystrokes, mouse movements, CPU utilization, hard
drive timings and network traffic characteristics) as input seed and use a cryp-
tographically secure pseudo-random bit generator to calculate pseudo-random
bits out of this input. Today, strong mixing functions are used as pseudo-ran-
dom bit generators. Such strong mixing functions are e.g. hash functions like
SHA-1 or RIPEMD160 or block ciphers like AES or 3DES.

2.3 Traffic Flow Confidentiality
One form of confidentiality is the so called “traffic flow confidentiality”, also
known as “prevention of traffic flow analysis”. Traffic flow confidentiality is
defined in the “ISO Security architecture” [ITU-T X.800 | ISO 7498-2]:

traffic analysis: “The inference of information from observation of traf-
fic flows (presence, absence, amount, direction and frequency).” [ITU-T
X.800 | ISO 7498-2]

traffic flow confidentiality: “A confidentiality service to protect
against traffic analysis.” [ITU-T X.800 | ISO 7498-2]
“Traffic flow confidentiality provides for the protection of the informa-
tion which might be derived from observation of traffic flows.” [ITU-T
X.814 | ISO 10181-5]

traffic padding: “The generation of spurious instance of communica-
tion, spurious data units and/or spurious data within data units.” [ITU-T
X.800 | ISO 7498-2]

k
l k>

00112
316
15

2 IT Security Services and Mechanisms
2.3.1 Security mechanisms for traffic flow confidentiality
The “ISO Confidentiality framework” introduces two mechanisms to prevent
traffic flow analysis: (1) data padding and (2) dummy events:

2.3.1.1 CONFIDENTIALITY PROVISION THROUGH DATA PADDING

“The purpose of this mechanism is to prevent knowledge of the
information represented by the size of a data item. This mech-
anism increases the size of data items so that the size of a pad-
ded data item bears little relation to its original size. One way
to do this is to add random data to the beginning or the end of
the data item. This must be done in a way that the padding is
recognizable as such by authorized entities but is indistinguish-
able from the data by unauthorized entities. In order to achieve
this, data padding can be used in conjunction with crypto-
graphic transformations.” [ITU-T X.814 | ISO 10181-5]

According to that definition, data padding changes the size of each data item,
regardless whether the data item is payload data or a dummy event.

2.3.1.2 CONFIDENTIALITY PROVISION THROUGH DUMMY EVENTS

“The purpose of this mechanism is to prevent inferencing based
on the rate that a given event occurs. An instance of this mech-
anism can be found in network layer security protocols that
seek to hide the volume of traffic exchanged over untrusted
links.
This mechanism produces pseudo events, e.g., bogus protocol-
data-units (PDU) that only authorized parties can identify as
such. This mechanism can be used to counter covert channel at-
tacks that perform signaling based on variations in the rate of
an activity.” [ITU-T X.814 | ISO 10181-5]

According to that definition, dummy events change the overall number of data
items, i.e. dummy data items are used together with the payload data items.

2.3.1.3 EXAMPLES

The security service traffic flow confidentiality offers confidentiality for both
the value of the data and for the context of a data item, i.e. it does protect the
data attributes, the fact that a communication takes place.
“Traffic flow analysis” is a passive attack against communication networks.
Such a communication network could be an electronic network like the inter-
net or a public switched telephone network (PSTN), but even a group of cou-
riers carrying messages through a war battlefield.
This kind of attack consists of observing as much as possible of the traffic in a
given network and analyzing the given communication patterns according to
different criteria.
16

2.3 Traffic Flow Confidentiality
In contrast to intercepting complete messages (transport protocol informa-
tion and payload data), the traffic analysis primary focuses on transport and
routing information. This is based on the fact that the payload data itself is
encrypted in many situations, e.g. encrypted E-mail attachments, encrypted
TLS connections or encrypted IP packets using IPSec.
The extracted communication patterns can be used to draw conclusions on
the involved parties of a communication. If also external events are taken into
account (like “What actions have been taken by the recipient after receiving
this information?”), the contents of a message can possibly deduced.

❏ The existence or the absence of a communication yields to information
about potential communication partners.

❏ The amount, direction and frequency of transmitted information can
yield to knowledge about the contents or the type of the information, if
the attacker knows additional context about the communication or the
involved entities (like external events performed by the entities).

To perform a traffic flow analysis, the attacker must be able to split the inter-
cepted traffic into single chunks of data; the bit sequence must be structured.
The manner of this structuring process is defined by the underlying network
protocol (e.g. ATM, Ethernet or PPP, TCP/IP). Based on the used protocol
stack, information of different protocol layers becomes available. Without
such a structuring process, the traffic analysis would not be possible.
One countermeasure to traffic analysis is the “link encryption”, which com-
pletely encrypts a communication link between two network elements. A link
encryption mechanism encrypts all traffic (including synchronization informa-
tion, message header information and data payload) prior sending it onto the
communication channel. This single, continuous application of an encryption
algorithm hides the visible boundaries (the structure) between single proto-
col messages. Link encryption mechanisms are used on synchronized commu-
nication links, where each clock cycle is encrypted.
In case that no messages are queued for transfer, randomized messages (or
octets) are inserted (stuffed) into the plaintext traffic (traffic padding). This
measure makes prevents an attacker to determining whether messages are
transmitted or not.
Link encryption transforms a sequence of protocol messages which are trans-
mitted on a single link into an encrypted octet sequence without visible struc-
ture.

2.3.2 Analogies between network traffic and structured data
Plaintext messages have an inner structure which is defined by the processing
application. There are exact rules how to interpret e.g. particular octets of a
PostScript file or an MPEG movie. Given today’s landscape of different applica-
tions, a numberless amount of different file formats exists.
In cryptography, the plaintext of a message is treated as a sequence of bits,
whose inner structure is unknown, dispensable and opaque to the encryption
algorithm. This assumption makes is possible to design generic cryptographic
17

2 IT Security Services and Mechanisms
algorithms which do not have to consider the type of the plaintext, but rather
work on arbitrary bit or octet sequences.
The widespread use of XML in many applications results in many new file and
data formats whose inner structure is given by the XML syntax. This leads to
the requirement to specific encryption systems which do not simply treat the
XML structure as a generic octet sequence but as structured information. A
specific encryption system for structured data like XML brings up new bene-
fits for the application domain like “selective field confidentiality”:

selective field confidentiality: “This service provides for the confiden-
tiality of selected fields within the (N)-user-data on an (N)-connection or
in a single connectionless (N)-SDU (service-data-unit).” [ITU-T X.800 |
ISO 7498-2]

Structuring information with a generic format like XML leads to data items
which have similar protection requirements like a communication link,
because an attacker has access to the structure information.
The encryption of a complete XML instance with a general purpose encryp-
tion algorithm without taking the inner XML structure into account is similar
to link encryption: the inner structure is completely invisible. W3C XML
Encryption [ER02] enables the encryption of parts of an XML instance, which
would correspond to encrypting selected PDUs on a link. What W3C XML
Encryption misses is the concept of data padding and dummy events in order
to hide the number, size and structure of encrypted portions in an XML
instance.

2.4 Data integrity
The security service data integrity aims to protect data items against acciden-
tal and intentional changes and modifications while the data is being stored,
processed or transmitted. For achieving the goal that data cannot be modified,
physical protection of the data is required, e.g. by write access control to
mediums or by using protected transfer mediums. In many cases, attackers
have access to the data so that the goal that “data cannot be modified” cannot
be achieved. This access can happen in various ways: by having physical
access to storage mediums like a local hard drive, when the data is stored in
the RAM of a computer, by gaining control over the software which processes
the data or when the data is transferred over network media which the
attacker has access to. If alterations of the data cannot be prevented, at least it
should be possible to detect whether an alteration has happened.

data integrity: “The property that data has not been altered or destroyed
in an unauthorized manner.” [ITU-T X.800 | ISO 7498-2]

The creator of the data applies a shielding mechanism to transform data into
integrity protected data. Using a validating mechanism, the receiving entity
18

2.4 Data integrity

i

(validator) can check whether the data is in its original form or whether an
unauthorized or accidental alteration modified the data. Using an unshielding
mechanism, the validator can regenerate the data from the integrity pro-
tected data.
As the shielding process usually concatenates the data with some crypto-
graphic value, the unshielding operation is the removal of the attached value
after validation of the integrity.

2.4.1 Types of data integrity services
Different data integrity security services, including connection-oriented (CO)
and connectionless (CL) integrity exist, which can also be applied on stored
data. A connection-oriented data integrity service provides integrity for all
user data and is able to detect modifications, insertion, deletion and replay of
any data within the connection. A connectionless data integrity service is able
to protect the integrity of single data packets (service data units - SDUs), but
cannot detect insertion, deletion and replay of packets or changes in the
sequence ordering.

2.4.2 Data integrity mechanisms
This document only refers to integrity mechanisms which are provided
through cryptographic means:

❏ Integrity provision through sealing is the application of a symmetric
algorithm to the data which involves a shared secret (symmetric) key.
The result of the sealing is attached to the data. For both shielding and
validating, both sides need the same secret key. The computation of the
value can be done in different ways:

❍ by symmetric encryption of a hash value of the data (see defini-
tion of hash functions for hash values),

❍ by creating a message authentication code (MAC) using an bit
block cipher or

Figure 2-4: Data integrity mechanisms

Shield generator Shield validator

shield
operation

data data

shield integrity
information

validate
operation

integrity protected data

integrity protected with peer
entity authentication channel,
maybe confidentiality-protected

modification detection
integrity information

unshield
operation

unshield
integrity information

generation of all
ntegrity information

n

19

2 IT Security Services and Mechanisms

H(i]
❍ by creating a HMAC (i.e. a MAC based on a keyed cryptographic
hash function) [KrBeCa97].

❏ Integrity provision through digital signatures (see “digital signature”
on page 22) is the application of a digital signature algorithm to the data.
The shielding operation requires the private key, while the validation
operation requires the public key of the shield generator.

2.4.3 Data integrity algorithms

hash function: “A (mathematical) function that maps values from a (pos-
sibly very) large set of values into a smaller range of values.” [ITU-T X.810
| ISO 10181-1]
The values in the ‘smaller range of values’ are called ‘hash values’.

one way function: “A (mathematical) function that is easy to compute
but, when knowing a result, it is computationally infeasible to find any of
the values that may have been supplied to obtain it.” [ITU-T X.810 | ISO
10181-1]

one way hash function: “A (mathematical) function that is both a one
way function and a hash function.” [ITU-T X.810 | ISO 10181-1]
A one way hash function is also called cryptographic hash function or
message digest function.

A cryptographic hash function calculates hash values from a message
. The message is a bit string with a defined length.

Given that is a collision resistant hash function (see [MOV96, pp. 325]), a
new hash function can be defined with which is also a
collision resistant hash function (chaining by the double application of).
Additionally, a collision resistant hash function can be defined which can
calculate a hash value of a finite set of messages :

(In the above formula, denotes the concatenation of the value with
the value .) The hash function calculates a hash value which depends on
both content and ordering of the input messages. Each message can have
one or more additional attributes, represented by . Such an additional
attribute could be the address of the message or the message’s creation date.
The additional attributes can be included in the hash value calculation as fol-
lows:

h h m()
m m

h
g g m() h h m()()=

h
H
m1…mi

H m1 m2 … mi, , ,() h h m1() h m2() … h mi()|| || ||[]=

a b|| a
b H

mi
ai

m1 a1 m, 2 a2 … mi ai, , , , ,) h h m1() a1 h m2() a2 … h mi() a|| || || || || ||[=
20

2.5 Authentication
A change or reordering in any input will change the overall hash value.
Current cryptographic hash functions include the “Secure Hash Algorithm”
SHA-1 defined in the Secure Hash Standard [FIPS180-1] and RIPEMD-160 [ISO/
IEC 10118-3].

2.5 Authentication
The security service authentication provides assurance about the claimed
identity of an entity. In authentication, a principal aims to prove its identity to
a verifier. After a successful authentication process, the principal’s identity
becomes an authenticated identity.
Two important classes of authentication are known:

peer entity authentication: “The corroboration that a peer entity in
an association is the one claimed.” [ITU-T X.800 | ISO 7498-2]

data origin authentication: “The corroboration that the entity respon-
sible for the creation of a set of data is the one claimed.” [ITU-T X.800 |
ISO 7498-2]

message authentication: “The property, given an authentication
code/protected checksum, that tampering with both the data and
checksum, so as to introduce changes while seemingly preserving in-
tegrity, are still detected.” [ERS02]

For using “peer entity authentication”, the principal (represented by a claim-
ant, e.g. a computer process) has a communications relationship to the veri-
fier, i.e. it is intended for connection-oriented communication. At some
instant of time during the communication between principal and verifier, the
verifier has to prove its identity to the verifier. So at this point in time, the ver-
ifier has assurance that his communication partner is the claimed principal;
further measures must be taken to ensure the continuity of the authentication
during the whole following communication. Peer entity authentication can be
performed unilateral by only one of the communicating entities, or by both so
that mutual peer entity authentication is performed.
By using the security service “data origin authentication”, the verifier has
assurance that the principal is the source of a data item in question. Data ori-
gin authentication mechanisms implicitly provide that the authenticated data
item is integrity protected.
Besides using the data origin authentication service for securing transmitted
data (in both the connection-oriented and the connection-less case), this ser-
vice can also be used to protect documents which are not transmitted but
stored.
21

2 IT Security Services and Mechanisms
2.5.1 Authentication mechanisms

message authentication code: “A cryptographic checkvalue that is
used to provide data origin authentication and data integrity.” [ITU-T
X.813 | ISO 10181-4]
Note: Both data integrity and data origin authentication can only be pro-
vided for the receiving entity. A third party cannot verify these proper-
ties, as both sender and receiver are capable to create the MAC (or
HMAC).

digital signature: “Data appended to, or a cryptographic transformation
of a data unit that allows a recipient of the data unit to prove the source
and integrity of the data unit and protect against forgery, e.g. by the re-
cipient.” [ITU-T X.800 | ISO 7498-2]
The standard mechanisms for digital signatures are RSA [RSA78] and DSA
[FIPS186-2].

Authentication mechanisms like digital signatures can be used to provide data
origin authentication. The OSI standards define these mechanisms to be used
for data items transmitted over networks. These mechanisms can by their very
nature also be used to protect data items stored on a local storage medium
(e.g. a hard drive) or in a database. Both ‘data origin authentication’ and ‘data
integrity’ in the context of data storage means that the entity which created or
stored the data item can apply these mechanisms to protect the stored data
item.

2.5.2 Authentication protocols
Authentication protocols are necessary to provide peer entity authentication:

authentication protocol: to provide to one party some degree of assur-
ance regarding the identity of another with which it is purportedly com-
municating. [MOV96]

An authentication protocol is a sequence of message exchanges between two
or more entities, to corroborate the identity of one or more of these entities.
Examples for authentication protocols are

❏ one-pass unilateral authentication protocols, e.g. password or digital sig-
nature based,

❏ two-pass mutual authentication protocols, e.g. challenge-response iden-
tification [Ramos98] using a shared secret key or digital signature based

❏ three-pass authentication protocols like zero-knowledge proofs, e.g. the
Fiat-Shamir or Schnorr identification protocols.

A zero-knowledge proof is a technique by which possession of information
can be verified without any part of that information being revealed.
22

2.6 Access Control
2.6 Access Control

access control: The prevention of unauthorized use of a resource, includ-
ing the prevention of the use of a resource in an unauthorized manner.
[ITU-T X.800 | ISO 7498-2]

In access control, an initiator aims to access a target (the resource). An ‘initia-
tor’ (also called ‘subject’) is an entity (e.g. human user or computer based
entity) that attempts to access other entities [ITU-T X.812 | ISO 10181-3]. The
‘target’ (also called object) is an entity to which access may be attempted. The
‘access request’ can be one in a set of different operations, for example a read
access to the contents of a file, a write or change access on that file or the exe-
cution of a program. The access request is handled by the ‘access control
enforcement function’ (AEF, sometimes called ‘reference monitor’). The
‘access control decision function’ (ADF) decides whether the initiator is
authorized and access to the target is granted or not.

The operations can be sorted into two major groups:

❏ observing access, i.e. read only access where the object is not changed
and

❏ altering access, i.e. writing or modifying access where the object or
attributes of the object are changed.

Imposing restrictions on read only access is usually done in order to maintain
the confidentiality of the object while altering access restrictions protect the
integrity and authenticity of the stored information. The interesting point on
access control is that the ‘access control enforcement function’ (AEF) has full
(read) access to the complete set of data items and associated attributes
which are stored on the target server. The AEF is a trusted process which only
passes information to the initiator which the initiator is allowed to see.
Access control systems are divided into two main classes: ‘discretionary
access control’ (DAC) and ‘mandatory access control’ (MAC). Discretionary
access control, also called identity-based access control (IBAC), bases the
access rights on the identity of subjects and objects involved. The owner of an
object constrains the access by granting access only to specific set of subjects.
In mandatory access control systems, also known as rule-based access con-

Figure 2-5: Fundamental access control functions

Initiator Target
Access Control Enforcement

Function (AEF)

Access Control
Decision

Function (ADF)

Present
access
request

Submit
access
request

Decision
request

Decision
23

2 IT Security Services and Mechanisms
trol, the access control decision is taken by the operating system based on a
given set of rules. In mandatory access control, the individual users do not set
permissions for their objects.
As this document deals with confidentiality, the term ‘access control’ refers to
observing access (read only) throughout this document.

2.7 Plausible Deniability
Security services describe often only a single side of a double sided coin. Secu-
rity services provided for one entity are undesirable for other entities. Defin-
ing who the user of a system is and who an adversary depends on the point of
view. For example, encrypting a database of members of the underground
movement in a suppressive regime is indispensable for members of this group
but is a serious threat for the military in the country.

plausible deniability: “Prevent that irrefutable evidence concerning the
occurrence or non-occurrence of an event or action exists.” [Roe97]

Many applications require non repudiation as a mandatory security service,
as it provides confidence for business transactions by generating evidence
that a particular event (like signing an order) has taken place. ‘Non repudia-
tion’ can be seen as the opposite to ‘plausible deniability’.
In some situations, such evidence is not desired and may even be a serious
security threat: when a user can become under coercion by an adversary:

❏ In a suppressive police state, finding traces of a subversive document on
an opponent’s hard drive can cause great problems for that person.

❏ Robbers can coerce a victim to disclose the PIN of a banking card.

❏ Custom authorities could require travelers to decrypt any encrypted
material found on the traveler’s hard drive, in order to find subversive
material or trade secrets [And01, pp. 442].

In situations like above, the security service “plausible deniability” could
help the user: by having a way to plausibly deny the existence of the material
in question. ‘Plausibly’ means that the adversary has no irrefutable evidence
about the event in question, so that it cannot be proved that the event
occurred respectively did not occur. A good thesis on plausible deniability by
MICHAEL ROE can be found in [Roe97]. Plausible deniability can be achieved by
multiple mechanisms:

❏ Different steganographic mechanisms exist for embedding material in
multimedia files like bitmap images or sound files.

❏ The use file systems which support plausible deniability like described
in [ANS98].

❏ The use of encryption systems:
24

2.7 Plausible Deniability
❍ By using an encryption mechanism which can decrypt the cipher-
text to different plaintexts, depending whether the decryptor is
under coercion by the adversary or not. If the decryptor is not
under coercion, the correct key is used to decrypt the real mes-
sage. If an adversary coerces the decryptor to decrypt the cipher-
text or to reveal the key, an alternative key is used in order to
reconstruct an innocuous message. A suitable encryption mecha-
nism for this method is the one time pad.

❍ The creation of dummy messages by encrypting arbitrary random
data and destroying the keys allows the decryptor to plausibly
deny to decrypt a particular ciphertext, claiming that this cipher-
text is not ciphertext but a random dummy message. In order to let
this approach work, a ‘regular’ ciphertext must be indistinguish-
able from a dummy message.
25

2 IT Security Services and Mechanisms
26

3 Introduction to XML
The “eXtensible Markup Language” (XML) is a standard which describes a
syntax for structuring data and documents. The XML recommendation was
first published in February 1998 by the WORLD WIDE WEB CONSORTIUM (W3C).
XML is a subset of the “Standard Generalized Markup Language” (SGML),
which is standardized in ISO 8879 [ISO8879]. The enormous complexity of
SGML caused the development of XML; goal was to develop a meta language
with only 10% complexity of SGML while keeping 90% of its potential. The
W3C shortly describes XML in the following way [Bos99]:

❏ “XML is for structuring data”:
XML is a text format for structuring arbitrary data. It’s not a program-
ming language. XML is a language for creating other languages. The new
languages are formally defined using a schema language, e.g. W3C’s XML
Schema. XML supports Unicode.

❏ “XML looks a bit like HTML”:
But it’s not HTML, it only uses the same constructs like elements,
attributes etc.

❏ “XML is text, but isn't meant to be read”:
Unlike binary formats like ASN.1, it’s pure text based syntax. This makes
it easier for developers to understand which data is creating by their
applications and debugging becomes easier. XML documents can be
edited with a text editor.

❏ “XML is verbose by design”:
Since XML is text, it has a high redundancy compared to binary encoded
formats like ASN.1 or proprietary formats for a particular application.
Compression can help here, if size is a problem.
XML’s verbosity has the advantage that developers and users can look
into the data with standard tools like a text editor and get a good idea
which information is stored in a given piece of XML.

❏ “XML is a family of technologies”:
XML means both the XML 1.0 Recommendation and a complete family
of standards (recommendations) which surround XML 1.0. This includes
XLink and XPointer for extensible, fine-grained linking concepts,
XHTML as successor for HTML, Scalable Vector Graphics (SVG) for vec-
tor based images, XML Signature for digital signatures and many more.

❏ “XML is new, but not that new”:
SGML, the ‘predecessor’ of XML, is available since the early ’80s and has
been standardized by the ISO in 1986. XML is not completely new, but
simply a subset of SGML.
27

3 Introduction to XML
❏ “XML leads HTML to XHTML”:
XHTML (eXtensible HTML) is an XML application and will be the succes-
sor of the ubiquitous HTML.

❏ “XML is modular”:
XML allows the definition of new document formats by reusing, combin-
ing and extending existing formats.

❏ “XML is the basis for RDF and the Semantic Web”:
The Resource Description Framework (RDF), which is a metadata appli-
cation proposed by the W3C, is based on XML.

❏ “XML is license-free, platform-independent and well-supported”:
The use of XML-based data and the creation of new XML-based lan-
guages do not require the payment of license fees to the W3C. Due to
the various XML parsers, XML processing tools are available on all com-
mon computing platforms. Interoperability between these platforms is
given by XML’s Unicode support.

The “eXtensible Markup Language (XML) 1.0” recommendation [BPMM+00]
defines the basic syntax for XML. The “Namespaces in XML” recommendation
[BHL99] extends XML 1.0 by defining a mechanism for binding elements and
attributes to a specific namespace for allowing semantic separation. The
“XML Information Set” recommendation [CoTo01] subsequently adds a ‘phi-
losophy’ to XML through providing a set of definitions that are used for
describing the information available in an XML document. The “Document
Object Model” (DOM) defines a platform- and language-neutral interface that
allows programs and scripts to dynamically access and update the content,
structure and style of documents [LLN+02]. The “XML Path Language”
(XPath) [ClDe99] describes a language for addressing and selecting parts of an
XML document.

3.1 XML v1.0
The “Extensible Markup Language (XML) 1.0” recommendation [BPMM+00]
defines the basic syntax for XML. XML is a language to markup text based doc-
uments. Markup refers to the process of ‘tagging’ data and text in a way so
that a description of the particular text becomes available to automated pro-
cessing.
In general, XML documents are trees, called XML trees. These trees have a
root node which is called the ‘document node’. The concept of a document
node is a little bit abstract as this particular node has no textual representation
in the XML instance, because it is the instance itself.
The basic building blocks of an XML tree are the ‘element nodes’. Element
nodes (elements) can contain other elements or ‘text nodes’. Text nodes con-
sist of one or more Unicode characters. Text nodes are always leafs of the tree.
Each XML tree has exactly one element as top level element node, the so
28

3.1 XML v1.0
called document element. This document element can contain an arbitrary
arrangement of child elements and text node children.
Additionally to these basic constructs, there exist ‘attribute nodes’ which are
name/value pairs for adding metadata to elements, ‘comment nodes’ which
carry comments and ‘processing instruction nodes’ (PI) which can be used to
control the XML processing application. XML also defines entity reference
nodes which are used for escaping characters which are usually used as
markup.
An XML instance consists of a single document node which contains exactly
one document element node and may also contain comments and processing
instructions. The document element may contain arbitrary constructs.

The following XML source code gives the serialized (text) version of the previ-
ous XML tree (this example does not directly map to the above tree; in the
below XML source code, there are linebreaks and other whitespace added to
show the depth of an element via indentation; e.g., the element in the
tree only contains one child: the <C> element. In the XML source, it contains
three children: a Text node, the <C> element and a second Text node).

Figure 3-1: Sample XML document structure

<?xml version="1.0"?>

<!-- This is the first comment (the top-left light-grey node) -->

<A>

 A text

 <C attr2="val2" attr1="val1">

 Another text <?anotherPI data?>

 </C>

Example 3-1: XML Markup of the tree structure from figure 3-1 on page 29

attr2="val2"attr1="val1"

Another text

A

C

B DA text attr3="some text"

element

document

element with attribute

text

comment

processing instruction
29

3 Introduction to XML
To demonstrate how a generic purpose XML aware software handles and pre-
sents this data, figure 3-2 shows how an XML Editor (Altova XML Spy) displays
the XML code from example 3-1.

Figure 3-3 shows how the Microsoft Internet Explorer renders a generic tree
view of the example XML document.

 <!-- the middle comment -->

 <C attr3="some text"/>

<!-- This is the last comment (the top-middle light-grey node) -->

<?targetOfThisPI This is the top-right dark-grey

 processing instruction with a

 target "targetOfThisPI"?>

Figure 3-2: Screenshot from the tool “XML Spy Editor”

Figure 3-3: Screenshot from the Microsoft Internet Explorer Browser

Example 3-1: XML Markup of the tree structure from figure 3-1 on page 29
30

3.2 XML Namespaces
3.2 XML Namespaces
The “Namespaces in XML” recommendation [BHL99] states:

“XML namespaces provide a simple method for qualifying ele-
ment and attribute names used in Extensible Markup Lan-
guage documents by associating them with namespaces
identified by URI references.”

XML instances can combine markup from various applications in a single doc-
ument. Without namespaces, this would lead to confusion if multiple applica-
tions use the same name for elements which have different semantics. For
instance, the “XML Signature” and the “XML Encryption” specifications both
define a <Transforms> element (both have the local name Transforms).
These elements have different semantics. Namespaces help to solve this situa-
tion by binding the elements to different namespaces.
Associating a local name to a namespace is done by binding a URI [BFM98] to
a prefix and using that prefix together with the local name. The binding is
done with special attributes which have the form xmlns:thePre-

fix="theURI". This binds the prefix "thePrefix" to the URI "theURI".

3.2.1 An example with namespaces
After that declaration, the prefix can be used in conjunction with element
names or attributes:

In example 3-2, there are 5 different name elements:

❏ The first name element is from the "http://www.company.com/
#application1" namespace defined in the <root> element (the
namespace definition is inherited therefrom)

❏ The 2nd name element defines its own namespace (with the "prefix2"
prefix) which is bound to "http://www.someothercompany.com/"

❏ The 3rd name element is bound to the "http://www.education.edu"
namespace but it does not use a prefix; the xmlns="http://www.educa-
tion.edu" declaration defines a ‘default namespace’ which is defined
for all elements which do not have a prefix.

<rootElement xmlns:prefix1="http://www.company.com/#application1">

 <prefix1:name value="My Name" />

 <prefix2:name xmlns:prefix2="http://www.someothercompany.com/" />

 <name xmlns="http://www.education.edu">Some name from education.edu</name>

 <prefix:name xmlns:prefix="http://www.education.edu">

 A name from education.edu
 </prefix:name>

 <name>A name element without any namespace attached</name>

</rootElement>

Example 3-2: An example with namespaces
31

3 Introduction to XML
❏ The 4th name element is bound to the "http://www.education.edu"
namespace and is semantically equivalent to the 3rd sample, only the
syntax (default namespace vs. prefix) differs.

❏ The last name has no namespace attached (no prefix and no default
namespace inherited from an ancestor).
Note: The default namespace defined in the 3rd name element is not
inherited because they are siblings, not ancestors or descendants.

3.2.2 Namespaces for Attributes
A default namespace only applies to elements. Attributes which are not pre-
fixed do not belong to any namespace. Binding an attribute to a namespace
can only be done by prefixing it like in example 3-3.

3.2.3 Redeclaring namespaces and undeclaring default
namespaces

A namespace declaration propagates into the complete subtree, i.e. a
namespace declaration is visible in all children and children of the children
etc. of the element in which the namespace was declared. This means that
namespaces do not have to be declared in all elements which utilize them, but
the declaration is sufficient in an ancestor.

In example 3-4, the namespace prefix a in the <a:root> element is bound to
"http://www.a.com/". The <a:c> element can use this already declared pre-
fix without refreshing the binding. So both the elements with the local name
root and local name c are bound to "http://www.a.com/".
A namespace prefix can be reused and be bound to another namespace by
reassigning it to the new namespace.

In example 3-5, the <c> element is in the "http://www.b.com/" namespace
because the prefix a is bound to that URI.

<element xmlns:pref="http://www.foo.com" pref:attr="This is in foo.com namespace" />.

Example 3-3: Binding an attribute to a namespace

<a:root xmlns:a="http://www.a.com/">

 <a:c />

</a:root>

Example 3-4: Namespace ‘bleeding’

<a:root xmlns:a="http://www.a.com/">

 <a:c xmlns:a="http://www.b.com/" />

</a:root>

Example 3-5: Namespace ‘bleeding’ 2
32

3.2 XML Namespaces
Once a prefix is assigned to a particular namespace, there is no way to remove
this binding; it can be reassigned to a new namespace, but in the given sub-
tree, the prefix is used and cannot be free’ed. This rule does not apply to
default namespaces.
In example 3-6, the <root> element declares a default namespace which
means that the unprefixed <root> element is in the given namespace. The
element uses the xmlns="" statement which undeclares the default
namespace—the element is in no namespace, the default namespace is
deleted. The <c> element declares the unused default namespace again.

3.2.4 Special namespaces
By definition, the prefixes xmlns and xml are bound to specific namespace
without that they have to be declared explicitly:

❏ The prefix xml is bound to "http://www.w3.org/XML/1998/namespace"

❏ The prefix xmlns is bound to "http://www.w3.org/2000/xmlns/"

❏ Even the attribute xmlns="http://foo" is in the above namespace,
although it does not use a prefix.

3.2.5 Relative URLs in namespaces
The W3C explicitly defined that namespaces must not have relative URLs as
namespace URI. For instance, the namespace xmlns="../1.dtd" is not
allowed as it is a relative URL. A document that contains namespace nodes
with relative URLs as value cannot be canonicalized (see “Canonical XML” on
page 47) and therefore not digitally signed.

3.2.6 Namespaces 1.1
The bleeding of namespaces into the subtree leads to problems during canon-
icalization (defined later): complicated processing models must be created to
allow easy cut-and-paste movement of subtrees into different contexts. For
this reason, the W3C started writing a new namespaces recommendation for
XML 1.1 [BHLT02], which enables XML to undeclare prefixed namespaces.
After XML 1.0 only allowed undeclaring the default namespace, XML 1.1
extends this concept to all namespaces.

<root xmlns="http://www.a.com/">

 <b xmlns="">

 <c xmlns="http://www.a.com/" />

</root>

Example 3-6: Namespace ‘bleeding’ 3
33

3 Introduction to XML
3.3 XML InfoSet
In October 2001, the “XML Information Set” [CoTo01] was published to unify
the way XML is described in further specifications:

“The XML Information Set provides a set of definitions for use
in other specifications that need to refer to the information in
an XML document.” [CoTo01]

In the following paragraphs, the “XML Information Set” will shortly be called
“infoset”. The infoset describes the “philosophy” behind the combination of
XML 1.0 and namespaces. All well-formed XML documents that satisfy the
namespace constraints defined by the namespaces recommendation [BHL99]
have an infoset.
An infoset consists of a number of “information items”. Each document con-
tains at least a “document information item” and an “element information
item”. An information item is an abstract description of a specific part of the
XML document. Each information item has a set of associated, named proper-
ties. The names of these properties are given in square brackets, [property-
Name]. According to the infoset recommendation, the terms “information set”
relates to the “tree” and the “information items” are the individual “nodes”.
Table 3-1 on page 34 gives an overview to the existing information items and
which properties exist in which information item.

Properties

Infoset items

D
oc

um
en

t

El
em

en
t

At
tr

ib
ut

e

Pr
oc

es
si

ng

In
st

ru
ct

io
n

Un
ex

pa
nd

ed

En
ti

ty
 R

ef
er

en
ce

Ch
ar

ac
te

r

Co
m

m
en

t

D
oc

um
en

t
Ty

pe
 D

ec
l

Un
pa

rs
ed

En

ti
ty

No
ta

ti
on

Na
m

es
pa

ce

[all declarations processed] X

[attribute type] X

[attributes] X

[base URI] X X X

[character code] X

[character encoding scheme] X

[children] X X X

[content] X X

[declaration base URI] X X X

[document element] X

[element content whitespace] X

[in-scope namespaces] X

[local name] X X

[namespace attributes] X

[namespace name] X X X

[name] X X X

Table 3-1: XML Information Set Properties
34

3.4 Document Object Model (DOM)
One problem of the information set is that the data model does not directly
map to the XPath data model (“XPath” on page 36) and the DOM data model.

3.4 Document Object Model (DOM)
The “Document Object Model” (DOM) recommendation [LLN+02] describes
the access to the tree of an XML document in a programming language neutral
fashion. This access includes navigation through and retrieval of information
(read access) and modification of the tree (write access). The DOM recom-
mendation has different versions, called “levels”. DOM Level 1 is not any more
important because of its lack for namespace support. DOM Level 2 extends
Level 1 and is namespace aware.
In the JAVA programming language, all DOM access classes are grouped inside
the org.w3c.dom.* package. The most common interfaces are:

❏ org.w3c.dom.Document represents the document information item

❏ org.w3c.dom.Node is the super class for all other information items

❏ org.w3c.dom.Element represents an element information item

❏ org.w3c.dom.Attr represents an attribute information item

❏ org.w3c.dom.Text represents a sequence of character information items
(here, a divergence between the information set data model and the

[normalized value] X

[notation name] X

[notations] X

[notation] X X

[owner element] X

[parent] X X X X X X

[prefix] X X X

[public identifier] X X X X

[references] X

[specified] X

[standalone] X

[system identifier] X X X X

[target] X

[unparsed entities] X

[version] X

Properties

Infoset items

D
oc

um
en

t

El
em

en
t

At
tr

ib
ut

e

Pr
oc

es
si

ng

In
st

ru
ct

io
n

Un
ex

pa
nd

ed

En
ti

ty
 R

ef
er

en
ce

Ch
ar

ac
te

r

Co
m

m
en

t

D
oc

um
en

t
Ty

pe
 D

ec
l

Un
pa

rs
ed

En

ti
ty

No
ta

ti
on

Na
m

es
pa

ce

Table 3-1: XML Information Set Properties
35

3 Introduction to XML
DOM data model becomes visible: in the infoset, each character is a sin-
gle information item while the DOM groups a contiguous charactes into
a single text node.

❏ org.w3c.dom.Comment and org.w3c.dom.ProcessingInstruction represent
the comment and the procession instruction information items.

3.5 XPath
The “XML Path Language” (XPath) [ClDe99] is used to identify and select parts
of XML documents. XPath has a syntax which is not XML based (no elements
etc.), so that the simple usage of XPath expressions inside attribute values or
text nodes is possible.
For instance, XPath is used by the XSL Transformations language (XSLT)
[Clark99] for selecting the nodes which are to be transformed by an XSLT
style sheet. XSLT defines a language for describing how an XML tree structure
is transformed into a result XML tree.
XPath allows the selection of nodes based on their local name, namespace
names, node values, position relative to other nodes and various other selec-
tion mechanisms like simple arithmetic operations. Additionally, text and
arithmetic operations can be performed. XPath Node types
The XPath data model knows only seven different types of nodes:

1. The root node (which maps to the document information item)

2. Element nodes

3. Attribute nodes

4. Namespace nodes

5. Comment nodes

6. Processing instruction nodes

7. Text nodes (a text node can consist of multiple character information
items; if multiple Text nodes (e.g. an alternating sequence of ‘real’ text
nodes and CDATA (character data) sections) are selected, only the first
node in the sequence is in the selection)
36

3.5 XPath
3.5.1 XPath axes
The XPath recommendation defines 13 so called axes. For a given node
(called context node), each axis identifies a node set relative to the context
node. Before illustrating how these axes look like, the term ‘document order’
must be introduced:

“There is an ordering, document order, defined on all the nodes
in the document corresponding to the order in which the first
character of the XML representation of each node occurs in the
XML representation of the document after expansion of general
entities. Thus, the root node will be the first node. Element nodes
occur before their children. Thus, document order orders ele-
ment nodes in order of the occurrence of their start-tag in the
XML (after expansion of entities). [...]. Reverse document order
is the reverse of document order.” [LLN+02]

The left tree in figure 3-4 is the structure on which the axes will be visualized
in the next samples; the black node in the middle named 'I' is the context
node which is used for selecting the axes.

3.5.1.1 SELF AXIS

The self axis (right tree in figure 3-4) contains just the context node itself
[ClDe99].

Figure 3-4: The sample document and the self axis

I

C

E S TD

B

H

L

M

A

F

J

Q

PK

R

O

N

G

XML tree

Context
node

I

C

E S TD

B

H

L

M

A

F

J

Q

PK

R

O

N

G

self axis
37

3 Introduction to XML
3.5.1.2 PARENT AXIS

The parent axis (left tree in figure 3-5) contains the parent of the context
node, if there is one [ClDe99].

3.5.1.3 ANCESTOR AXIS

The ancestor axis (middle tree in figure 3-5) contains the ancestors of the con-
text node; the ancestors of the context node consist of the parent of context
node and the parent's parent and so on; thus, the ancestor axis will always
include the root node, unless the context node is the root node [ClDe99].
Seen relative to the document order, the start tag of an ancestor opens before
the start tag of the context node and the end tag of the ancestor node closes
after the end tag of the context node.

3.5.1.4 ANCESTOR-OR-SELF AXIS

The ancestor-or-self axis (right tree in figure 3-5) contains the context node
and the ancestors of the context node; thus, the ancestor axis will always
include the root node, i.e. the document node [ClDe99]

Figure 3-5: parent, ancestor and ancestor-or-self axes

I

C

E S TD

B

H

L

M

A

F

J

Q

PK

R

O

N

G

ancestor-or-self axis

I

C

E S TD

B

H

L

M

A

F

J

Q

PK

R

O

N

G

parent axis

I

C

E S TD

B

H

L

M

A

F

J

Q

PK

R

O

N

G

ancestor axis
38

3.5 XPath
3.5.1.5 CHILD AXIS

The child axis (left tree in figure 3-6) contains the children of the context
node [ClDe99].
The child axis never contains attribute or namespace nodes (see “Attribute
axis” on page 41 and “Namespace axis” on page 41).

3.5.1.6 DESCENDANT AXIS

The descendant axis (mid tree in figure 3-6) contains the descendants of the
context node; a descendant is a child or a child of a child and so on; thus, the
descendant axis never contains attribute or namespace nodes [ClDe99].
Relative to the document order, the start tag of a descendant follows the start
tag of the context node and the end tag of the descendant precedes the end
tag of the context node.

3.5.1.7 DESCENDANT-OR-SELF AXIS

The descendant-or-self axis (right tree in figure 3-6) contains the context node
and the descendants of the context node [ClDe99].

Figure 3-6: child, descendant and descendant-or-self axes

I

C

E S TD

B

H

L

M

A

F

J

Q

PK

R

O

N

G

child axis

I

C

E S TD

B

H

L

M

A

F

J

Q

PK

R

O

N

G

descendant-or-self axis

I

C

E S TD

B

H

L

M

A

F

J

Q

PK

R

O

N

G

descendant axis
39

3 Introduction to XML
3.5.1.8 PRECEDING-SIBLING AXIS

The preceding-sibling axis (left tree in figure 3-7) contains all the preceding
siblings of the context node; if the context node is an attribute node or
namespace node, the preceding-sibling axis is empty [ClDe99].

3.5.1.9 FOLLOWING-SIBLING AXIS

The following-sibling axis (right tree in figure 3-7) contains all the following
siblings of the context node; if the context node is an attribute node or
namespace node, the following-sibling axis is empty [ClDe99].

Figure 3-7: preceding-sibling and following-sibling axes

I

C

E S TD

B

H

L

M

A

F

J

Q

PK

R

O

N

G

following-sibling axis

I

C

E S TD

B

H

L

M

A

F

J

Q

PK

R

O

N

G

preceding-sibling axis
40

3.5 XPath
3.5.1.10 PRECEDING AXIS

The preceding axis (left tree in figure 3-8) contains all nodes in the same doc-
ument as the context node that are before the context node in document
order, excluding any ancestors and excluding attribute nodes and namespace
nodes [ClDe99]. Relative to the document order, the end tag of a preceding
node precedes the start tag of the context node; there is no parent/child or
ancestor/descendant relationship between preceding and context node.

3.5.1.11 FOLLOWING AXIS

The following axis (right tree in figure 3-8) contains all nodes in the same doc-
ument as the context node that are after the context node in document order,
excluding any descendants and excluding attribute nodes and namespace
nodes [ClDe99]. Relative to the document order, the start tag of a node in the
following axis follows the end tag of the context node; there is no parent/
child or ancestor/descendant relationship between preceding and context
node.

3.5.1.12 ATTRIBUTE AXIS

The ‘attribute axis’ cannot not be visualized by the example, because the
attributes (as well as the namespaces) are directly bound to the element, i.e.
their position in the tree is inside their owner element:
The attribute axis contains the attributes of the context node; the axis will be
empty unless the context node is an element [ClDe99].

3.5.1.13 NAMESPACE AXIS

The ‘namespace axis’ contains the namespace nodes of the context node; the
axis will be empty unless the context node is an element [ClDe99].

Figure 3-8: preceding and following axes

I

C

E S TD

B

H

L

M

A

F

J

Q

PK

R

O

N

G

preceding axis

I

C

E S TD

B

H

L

M

A

F

J

Q

PK

R

O

N

G

following axis
41

3 Introduction to XML
3.5.1.14 PARTITIONING OF THE DOCUMENT USING AXES

The five axes ‘ancestor’, ‘preceeding’, ‘self’, ‘descendant’ and ‘following’ par-
tition the complete document (see figure 3-9).

For an arbitrary context node, each Element-, Text-, Comment- or PI-node in
the document is on one of the context node’s axes. So the axes can be used to
describe their relative position to each other. The details of a classification
scheme can be found in table 7-3 on page 97.

3.5.2 XPath examples
The use of XPath for selecting nodes is shown using examples.

3.5.2.1 EXAMPLE 1
Given an HTML document, the text value of the third chapter heading ele-
ment can be selected using the XPath expression in example 3-7.

The syntax in the example is the abbreviated syntax which does not explicitly
specifies the axes. The ‘/’ at the beginning of the expression selects the docu-
ment node, i.e. the parent node of the document element node. The ‘html’
assumes that the document element is an <html> element. Otherwise, the
node set would be empty. The next location step selects all <body> elements
which are children of the <html> element. From all selected <body> elements,
all <h1> elements are selected. From the resulting node set, the third node is
selected. On this node, the ‘text()’ function is evaluated. This evaluation
returns the concatenated string values of all Text descendants.

Figure 3-9: Partitioning using XPath axes

/html/body/h1[3]/text()

Example 3-7: Abbr. XPath expression to select a heading in an HTML doc.

I

C

E S TD

B

H

L

M

A

F

J

Q

PK

R

O

N

G

42

3.5 XPath
Using the full syntax (not abbreviated), the XPath would read like in
example 3-8.

3.5.2.2 EXAMPLE 2
Given the HTML document in example 3-9. The paragraph <p> contains two
<a> hyperlinks with a href attribute and corresponding link text.

The XPath expression

//a/@href[contains(../text(), "Markup")]/..

selects the first of the two <a> elements, because the hyperlink text contains
the character sequence ‘Markup’.

❏ The ‘//a’ part of the expression selects all <a> elements in the complete
document and is the short form of ‘/descendant-or-self::a’.

❏ The ‘/@href’ selects all href attributes in the <a> elements. The long
form of this expression is ‘/attribute::href’.

❏ The predicate test ‘[contains(../text(), “Markup”)]’ is evaluated
against all href attributes.

❍ The contains() function returns true if the string in the first argu-
ment contains the string from the second argument.

❍ The first string is the result of the evaluation of ‘../text()’.

✰ The expression ‘..’ selects the parent of the context node. In
this case, the context node is the href attribute. The parent
of the href attribute is the <a> element.

✰ The result of the text() function is the value of all text
nodes.

❍ For the first <a> element, the result of the text() function is " The
Markup conference ". In that case, the contains() function
returns true.

❍ For the second <a> element, the evaluation of the contains()
function returns false.

/child::html/child::body/child::h1[position()=3]/child::text()

Example 3-8: XPath expression to select a heading in an HTML doc

<html><body><p>

 The Markup conference

 The Security conference

</p></body></html>

Example 3-9: HTML document with two links
43

3 Introduction to XML
❏ After the predicate test, the result contains the href attribute of the first
<a> element. In the concluding ‘..’ step, the first <a> element is
selected.

The abbreviated XPath expression

//a/@href[contains(../text(), "Markup")]/..

has the following long form:

/descendant-or-self::node()/child::a/attribute::href[contains(
parent::node()/child::text(), "Markup")]/parent::node

3.6 Differences between the DOM2 and XPath
data model

The W3C works hard on making all recommendations consistent to each
other, but sometimes, this goal is not fully reached. One example for this is
the handling of namespaces:
The Document Object Model Level 2 (DOM2) is namespace aware, i.e. all ele-
ments and attributes have a namespace property. Given the XML code in
example 3-10.

If XML is parsed into a DOM2 structure, the <a:root> element has two
attributes, an "xmlns:a" and an "attr" attribute. This means that both the
namespace node and the attribute node can be found in the attributes of the
element. The XPath model is slightly different: The attribute axis contains
only one attribute, namely the "attr" attribute. The namespace axis contains
a node for the "xmlns:a" namespace declaration.
Given the DOM2 representation of the element in example 3-10, the ele-
ment does not have any attributes. Again, the XPath model is different: The
namespace axis contains a node for the "xmlns:a" namespace declaration
which was made in the <a:root> ancestor element. So the XPath view of
example 3-10 would be like example 3-11.

<a:root xmlns:a="http://www.a.com/" attr="foo">

 <a:c />

</a:root>

Example 3-10: XML snippet on DOM2 namespace handling

<a:root xmlns:a="http://www.a.com/" attr="foo">

 <b xmlns:a="http://www.a.com/">

 <a:c xmlns:a="http://www.a.com/"/>

Example 3-11: XPath view from example 3-10
44

3.6 Differences between the DOM2 and XPath data model
This leads to some problems when it comes to evaluating very strange XPath
expressions on documents: XML Signature (discussed in the next chapter) is
defined in terms of the XPath data model, and depending on what XPath pro-
cessor is used for performing operations on a document, the results can differ.
For instance, the Apache Xalan-J processor does not return correct results if
selections on the namespace axis are made.
Another namespace related problem is the existence of xmlns="" attributes in
DOM space versus the absence of the default namespace in the namespace
axis in XPath space. Given the XML in example 3-12.

In a DOM2 tree, the foo element has a single attribute in the “XML
Namespaces” namespace with localname xmlns and no prefix and with an
empty value. In the XPath data model, the foo element has an empty attribute
axis and an empty namespace axis. So for the XPath data model, it is equal to
example 3-13.

Using the snippet from example 3-13 in another surrounding context like in
example 3-14, in the DOM2 representation, both bar and foo have a single
attribute. In the XPath model, the namespace axis of <bar> has one
namespace while the namespace axis of <foo> is empty.

</a:root>

<foo xmlns="">

</foo>

Example 3-12: Default namespace undeclaration

<foo>

</foo>

Example 3-13: No default namespace undeclaration

<bar xmlns="http://bar.com/">

 <foo xmlns="">

 </foo>

</bar>

Example 3-14: foo element with empty namespace axis

Example 3-11: XPath view from example 3-10
45

3 Introduction to XML
46

4 Canonical XML and XML Signature
The “Canonical XML Version 1.0 Recommendation” [Boy01] describes a
method for creating a unique physical representation of an XML instance
which accounts for permissible changes. If two XML documents have the
same canonical form, then these documents are logically equivalent in a given
context. Canonicalization discards irrelevant details from an XML document
and supplies a non-ambiguous octet representation. (Canonicalization is often
simply called “c14n” because this long word consists of the character ‘c’, then
14 other characters and the trailing ‘n’ character.)
The “XML Signature Syntax and Processing Recommendation” [ERS02] doc-
ument specifies a syntax and basic processing rules for XML Signatures:

“XML Signatures provide integrity, message authentication,
and/or signer authentication services for data of any type,
whether located within the XML that includes the signature or
elsewhere.” [ERS02]

The term ‘message authentication’ is defined as follows:

message authentication: “The property, given an authentication
code/protected checksum, that tampering with both the data and
checksum, so as to introduce changes while seemingly preserving in-
tegrity, are still detected.” [ERS02]

Therefore, XML Signatures provide integrity and data origin authentication for
arbitrary parts of the XML document in which the signature resides, arbitrary
parts of external XML documents and arbitrary non-XML resources.

4.1 Canonical XML
XML defines a serialization format for a tree structure that has specific proper-
ties. XML documents which have the same infoset can differ in their physical
representation. The term “physical representation” refers to an XML docu-
ment which is serialized into a octet sequence. Here are some examples to
illustrate these ambiguities:

❏ Character encoding: XML is able to be serialized using different [charac-
ter encoding schemes] like Unicode UTF-8, Unicode UTF-16, ASCII or
ISO-8859-1. C14n always uses the [character encoding scheme] UTF-8.

❏ Line breaks: Different systems (UNIX, Microsoft Windows, Apple
Mac OS) use different line endings. All line endings are normalized
(UNIX convention).

❏ Attribute values: The values of the attributes are to be normalized
according to the XML 1.0 specification. All attribute values are delimited
by double quotes.
47

4 Canonical XML and XML Signature
❏ Attribute ordering: Attribute information items are attached to a given
element, but they are not children of that element. The attributes are an
unordered set of name/value pairs. Additionally, the element informa-
tion item has the [namespace attributes] property. C14n defines the
order in which serialization must be performed on [namespace
attributes] and [attributes].

❏ Whitespace: attributes in the ‘start tag’ are separated using a single
space. Multiple spaces are reduced to a single space. Whitespace outside
the document element (direct whitespace ‘children’ of the document
information item are not text information items, so this ‘indentation
whitespace’ is normalized).
Whitespace in ‘real’ text information items is not changed (but the line
endings).

❏ CDATA sections: Text can be stored in Text nodes or in CDATA sections.
CDATA sections allow to directly use characters which are normally
reserved for markup. CDATA sections are converted into text nodes.

❏ Character and parsed entities are expanded: XML 1.0 allows defining
abbreviations for user-defined information. Character entities are some
sort of abbreviations like the HTML “Ü” entity for the German
umlaut ‘Ü’. Parsed entities are like macros for complete sequences of
XML code.

❏ Empty elements: An empty element which has no child nodes can be
represented like <e></e> or <e/>. C14n selects the former representa-
tion (start-and-closing tag) for all empty elements.

❏ XML declaration and DTD removed: XML is often prefixed by the <?xml
version="1.0"?> declaration. Additionally, a DTD or DTD subset can be
included. Both are omitted from canonical XML.

❏ Default attributes are added: The DTD subset can define default
attributes for particular elements. These attributes must be added to the
respective elements.

❏ Special characters: Special characters in text information items and
attribute information item values are replaced by their character refer-
ences.

❏ Namespace declarations: Superfluous namespace declarations are
removed. If a namespace is already visible by the [in-scope namespaces]
property, but is redefined using the same value, this declaration is redun-
dant and will be removed.
48

4.1 Canonical XML
The “Canonical XML Version 1.0 Recommendation” defines two different
algorithms:

❏ Canonical XML with comments (including comments)

❏ Canonical XML without comments, also called “Canonical XML omit-
ting comments)

Canonical XML is defined using the XPath data model and allows XPath node-
sets as input. The most complicated part of the canonicalization process is to
decide which namespaces are in scope and in which start tag they are to be
declared during canonicalization (superfluous namespace declarations have
to be removed).

4.1.1 Document subsets
Canonical XML allows the canonicalization of XML documents, XML docu-
ment subsets or octet sequences which form an XML document. To illustrate
the canonicalization of a document subset, the left illustration in figure 4-1
shows an input XML tree. The middle illustration shows which nodes are
selected for inclusion in the document subset. The right illustration shows an
XML document which corresponds to the canonicalized document subset. .

One possible XPath expression to select this subset could be

(/A | //B | //E | /A/G | /A/H/J/K)

Nodes become direct children of their first visible ancestor when their parent
node has not been canonicalized; this is shown in the right tree in figure 4-1:
The E node becomes a child of B and the K node becomes a child of A.
Figure 4-2 on page 50 illustrates how namespace declarations are inherited
from ancestors, if the ancestors are not part of the selected document subset:

Figure 4-1: Canonicalizing a document subset

A

G

I

HB

D

E

F

C J L

K
D Unselected Node

E Selected Node

A

G

I

HB

D

E

F

C J L

K

XML tree selected subset

A

GB

E

K

canonicalized subset
49

4 Canonical XML and XML Signature
1. Element A binds the default namespace and the prefix w3c. The [in-
scope namespaces] of the infoset is as follows:
1. The default namespace is bound to "http://www.ietf.org"

2. Prefix "w3c" is bound to "http://www.w3.org"

2. Element B does not change the [in-scope namespaces]. There is no
ancestor in the document subset who defines the both namespaces, so
they must be declared by element B. The [in-scope namespaces] are as
follows:

1. The default namespace is bound to "http://www.ietf.org"

2. Prefix "w3c" is bound to "http://www.w3.org"

3. Element C removes the binding of the default namespace.

1. The default namespace is not assigned.

2. Prefix "w3c" is bound to "http://www.w3.org"

4. Element D binds the prefix blah.

1. The default namespace is not assigned.

2. Prefix "w3c" is bound to "http://www.w3.org"

3. Prefix "blah" is bound to "http://www.blah.org"

Note: The node-set is treated as a set of nodes, not a list of subtrees. If the
input to be canonicalized is a node-set, the node-set must contain all nodes/
information items which are to be serialized. In the DOM, selecting an ele-
ment is analogous to select the element, all attributes and namespace declara-
tions and all its descendants, or in short, the complete sub tree. In Canonical
XML, the selection of this element means that only the element node without
any attributes, namespace declarations or child nodes is canonicalized.

Figure 4-2: Namespace inheritance in document subsets

B

xmlns="http://www.ietf.org" xmlns:w3c="http://www.w3.org"A

D xmlns:blah="http://www.blah.org"

xmlns=""C

B xmlns="http://www.ietf.org" xmlns:w3c="http://www.w3.org"

D xmlns="" xmlns:blah="http://www.blah.org"

Input node set
(4 elements with namespace declarations)

Output node set
(2 elements with inherited namespace declarations)
50

4.1 Canonical XML
4.1.2 Applications of Canonical XML

4.1.2.1 XML SIGNATURE

Canonical XML is used by XML Signature to create a unique representation of
an XML document or a subset hereof. This unique representation is necessary
to compute a cryptographic digest value which is to be signed.
Canonical XML is very important if only a part of an XML document is to be
signed. Many applications which process XML depend on the [in-scope
namespaces] property of an element. This means that it is important which
namespaces have been declared in the parent and ancestor element of the
current node. The [prefix] of an element or attribute name does not carry
semantic information in itself, it only binds the [local name] of the element/
attribute to the [namespace name]. Depending on which [namespace name]
is currently bound to the [prefix] in question, applications handle the infor-
mation item differently. So, if an attacker could change that binding without
breaking a signature, there would be a way to circumvent the trust model of
the system.

4.1.2.2 XML ENCRYPTION

Canonical XML is used as a mechanism for the consistent serialization of XML
into an octet stream prior XML encryption.
XML Encryption as currently defined by the W3C is a mechanism where an
element (a complete subtree; similar to the XPath expression descendant-or-
self()) or the element content (all children of an element; similar to the
XPath expression descendant()). Plaintext (unencrypted) nodes are located
in an XML document and ‘live’ in a specific context. This context is formed of
their position, eventually the XML fragment uses [unexpanded entity
references] and additionally, there possibly exist [in-scope namespaces]. During
the encryption process, the XML becomes opaque ciphertext (an
<xenc:EncryptedData> element). If the ciphertext replaces the plaintext,
remains in place, is at a later time decrypted and if the resulting plaintext
replaces the ciphertext, the plaintext after decryption is in the same context
as before encryption. If the ciphertext is placed at a new location or the
decrypted plaintext is placed somewhere else, the original context is not pre-
served. For this reason, the plaintext should include its full context prior
encryption to allow cut–and–paste applications without loss of relevant infor-
mation.

4.1.2.3 COMPARISON OF XML DOCUMENTS OR FRAGMENTS

Canonical XML can be used to compare two XML documents and to decide
whether they are logically equivalent. This would make sense in environ-
ments where UNIX-like ‘diff’ commands shall be applied to XML.
51

4 Canonical XML and XML Signature
4.2 XML Signature
The “XML Signature Syntax and Processing” recommendation [ERS02] is a
relatively young internet standard by the W3C which defines a syntax and pro-
cessing model for a special format for digital signatures. These signatures are
represented in an XML format and can sign arbitrary resources, including XML
and parts thereof.

4.2.1 Introduction
The structure and processing of XML Signatures introduces some interesting
concepts which will be explained briefly: First, a single XML Signature can
cover (sign) multiple resources/messages. It is possible to sign an XML docu-
ment, a web resource and a binary image on the hard drive using a single XML
signature.
Conventional signature systems, which can only sign a single resource, sign the
hash value of the signed resource. To enable XML Signature to sign multiple
resources, the signing process consists of two distinct steps: The hash values
of the signed resources and additional attributes (their URI) are collected in an
octet string. This octet string is digested again, and the resulting hash value is
then signed using a signature method like e.g. “RSA/SHA-1”. (There can exist
multiple independent digest functions; the first one for resources and the sec-
ond one implicitly in the signature algorithm. This often causes confusion.)

The hash value/URI collection and the signature value form the basic signature
structure. Additionally to these basic building blocks, there exist structures to
embed key management information like key names or certificates and arbi-
trary objects (XML itself or base64 encoded binary data) into the signature.
Each entry in the hash value/URI collection can contain an additional
sequence of transforms which are to be applied prior digest value calculation.
This enables XML Signature to apply some pre-processing operations to a ref-
erenced resource; the output of the transforms is the content to be signed.
Transforms can include transforms like selecting specific parts of an XML doc-

Figure 4-3: Hash value generation for XML Signature (simplified)

data item 1
hash value 1

hash function

data item 2
hash value 2

hash function

data item n
hash value n

hash function

hash value 1

hash value 2

hash value n

signaturemessage
authentication code function

digital signature
function

private key

secret key
52

4.2 XML Signature
ument or Base64 decoding or even user-defined transforms for a specific
application domain.
The XML Signature recommendation supports digital signatures using algo-
rithms like RSA or DSA which support data origin authentication and it sup-
ports symmetric MAC algorithms, which do not provide data origin
authentication, so the term ‘signature’ and ‘signing’ is not always correctly
used in the sense of ‘data origin authentication’. Nevertheless, in the follow-
ing chapter, “signing” and “verifying” refer to both creating/validating a signa-
ture using a private key or a MAC using a secret key.

4.2.2 Enveloping, enveloped and detached signatures
Old-fashioned signature systems like PGP or S/MIME produce two different
forms of signatures:

1. Enveloping signatures wrap the signed contents; they form an enve-
lope around the signed contents. The signed contents become part of
the signature.

2. Detached signatures are objects which are separated from the signed
contents.

These forms have different properties and limitations:

4.2.2.1 ENVELOPING SIGNATURES

Enveloping signatures have the advantage that only one data object exists:
The signature and the signed content form a single entity which can be han-
dled easily during transport—there is no problem to miss the signature or the
contents, it’s always together. But this strength is also the problem: Before an
application can handle and process the signed contents, the signature applica-
tion must strip away the signature-envelope; e.g. if the signer signs a Microsoft
Word document using PGP and does not create a detached signature (which
implicitly means that an enveloping signature is created), the verifier must
first validate the signature before he get’s access to the signed Word docu-
ment. Only the signature application knows how to “unpack” the signed con-
tents. The packaging problem is not specifically related to a particular
signature application, but it’s inherent if binary data is wrapped by an envel-
oping signature.
If the enveloped data is an XML instance, it’s very easy for an XML processing
application to access this data because it’s accessible inside the XML docu-
ment without the necessity to use an XML Signature tool.

4.2.2.2 DETACHED SIGNATURES

Detached signatures have the advantage that the signed contents are not
merged into the signature so that they stay where they are without being
modified in any way. The association between signature and signed contents
is usually done using a simple mechanism like the file name (PGP) or by other
logical bindings like the ordering of a e-mail-attachments (MIME expresses
which message parts are signed by a S/MIME signature). These bindings are a
53

4 Canonical XML and XML Signature
little bit weak: The signed contents can be unintentionally separated from the
signature by copying or forwarding only the contents while forgetting the sig-
nature. The vice-versa situation is also possible: Forward only the signature
and forgetting the signed contents. If the file containing the signature is
renamed, the link is also broken. This makes the handling of detached signa-
tures very prone to errors and user mistakes. The weak binding between sig-
nature and signed contents makes it even more complicated because if a
recipient requests the missing signed contents from the signer, the filename
itself is often insufficient information to find the corresponding contents.
XML Signature allows the creation of both enveloping and detached signa-
tures. XML Signatures use URIs to identify the signed contents. This makes it
possible to select files in a directory, on a web server and in any entity which
is addressable via URI mechanisms. The creator of an XML Signature (the
signer) is free on how he uses URIs, whether he uses absolute or relative URLs
or even URNs for naming non-network resources. URIs add a strong binding
mechanism to the detached signature mechanism. If the signer sends only the
signature without signed contents, the verifier implicitly ‘knows’ how to
retrieve the signed contents. Enveloping signatures benefit from XML Signa-
ture through the possibility to include multiple signed objects.

4.2.2.3 ENVELOPED SIGNATURES

Additionally to enveloping and detached signatures, XML Signature introduces
a new type of signature:
Enveloped signatures are signatures which are placed inside the signed con-
tents, they are enveloped by the signed contents. Enveloped signatures can
only sign XML documents because they must become part of that document.
Of course, this signed XML document can contain base64 encoded binary
data.
Placing the signature into the document brings digital signatures very close to
the way on how people use handwritten signatures today: The signature
becomes part of the signed document, like the ink on the paper of a contract.
The incorporation of a signature into an XML document changes the data
structure of the document, so that the signed contents are changed by the sig-
nature itself. For that reason, XML Signature has a mechanism (Transforms) to
select which portions of a document have been signed.

4.2.2.4 COMPARISON

In contrast to conventional signature systems, XML Signature enables the user
to sign multiple resources within a single signature. Additionally, an XML doc-
ument can contain multiple signatures.
An XML Signature can be enveloped in a signed resource, while enveloping a
second resource and signing a third resource outside to the document. The
terms ‘enveloping’, ‘enveloped’ and ‘detached’ for XML Signatures refer to the
relationship between signed contents and signature:
54

4.2 XML Signature
❏ An enveloping signature is an ancestor of the signed contents in the
XML tree.

❏ An enveloped signature is a descendant relative to (parts of) the signed
contents in the XML tree. (Note: In most cases, the signature is not a
descendant relative to all signed contents but to some of them; other-
wise, an enveloped signature could sign only nodes which are on the
XPath ancestor() axis. For illustrating this, see figure 4-4 on page 55.)

❏ A detached signature has no parent/child relationship to the signed con-
tents. This is the case for two situations:

❍ The signature and the signed contents reside in separate entities,
e.g. in two different files or

❍ the signature and the signed contents reside in the same XML doc-
ument but have no parent/child relationship, e.g. both are siblings.
The signed contents are outside of the signature element.

Figure 4-4 illustrates the different types of XML Signatures.

Figure 4-4: Enveloped, enveloping and detached signatures

Signed Content

Signed Content

Signed Content

Signed Content

Signed Content

Signature

Document

Enveloped Signature

Signed Content

Signed Content

Signature

Document

Enveloping Signature

Signed Content

Signed Content

Signature

Document

Detached Signature,
signed content in same document

Signed Content

Signature

Document

Detached Signature,
signed content in separate entity
55

4 Canonical XM
L and XM

L Signature

56 and the three XML based signature types:

XML
e

Detached
XML Signature

Enveloped
XML Signature

2 1

ust depends on usage easy and robust

age;
s are
ed;
tents
le

easy; signed content is
directly accessible

easy; signed content is
directly accessible

n be Everything can be
signed

Only XML can be
signed

forms URI plus Transforms URI plus Transforms

ber of
igned

an arbitrary number of
objects can be signed

an arbitrary number of
objects can be signed

yes yes

pes
Table 4-1 summarizes the differences between the two existing signature forms

Signature Type
Enveloping
signature

Detached signature
Enveloping

Signatur

Nr. of existing objects 1 2 1

Transport handling easy and robust complicated and fragile easy and rob

Signed contents handling
complicated; Signing
application required

for unwrapping

easy; signed content is
directly accessible

depends on us
binary content
base64 encod

signed XML con
are accessib

Signed contents constraints
Everything can be

signed
Everything can be

signed
Everything ca

signed

Binding to signed contents fixed
simple mechanism like

filename
URI plus Trans

Number of signed entities
only one object can be

signed
only one object can be

signed
an arbitrary num
objects can be s

Signature types can be
combined

no no yes

Table 4-1: Comparison of signature ty

4.2 XML Signature
4.2.3 References

4.2.3.1 BASICS

Like mentioned earlier, XML Signature allows signing multiple resources
within a single signature. For example, a single XML Signature can sign both
an XML document and a file of a binary PNG image. To enable such function-
ality, the XML Signature recommendation introduces a construct called “Refer-
ence”. A Reference is created using the <Reference> element. A Reference
contains a pointer (URI attribute) to the signed contents and the hash value of
these signed contents. The hash value is base64-encoded and stored in the
<DigestValue> element. To indicate which hash function has been used, each
Reference must also contain the <DigestMethod> element which contains the
algorithm identifier of the hash function as an Algorithm attribute. A simple
example of a <Reference> is in example 4-1.

The processing chain for a single <Reference> are as follows:

❏ De-referencing the URI,

❏ optionally transforming the contents (if <Transforms> are given),

❏ optional conversion to octets (only if the result of the previous step is a
node set, canonical XML is applied) and

❏ applying the given <DigestMethod> to the octets to get the hash.

4.2.3.2 DE-REFERENCING URI ATTRIBUTES

The signed resource has the URI "http://www.w3.org/TR/xml-stylesheet",
the used hash function is SHA-1 and the base64-encoded hash value is in the
<DigestValue> element. To verify this reference, the resource is fetched from
the web (or from another location like a proxy or local cache) and the de-ref-
erenced octets are directly used as input to the hash function.
The de-referenced contents which are identified by the URI attribute are
either octet streams or XPath node-sets. The data type of the de-referenced
contents depends on the type of the URI. URIs which point to resources out-
side of the current document always return octet streams. This includes net-
work resources or files in the local filesystem. An octet stream is even
returned for resources which are external XML instances. URIs which point to
parts of the same document in which the signature resides are called “same-
document” references; de-referencing a same-document URI results in an
XPath node-set.

<ds:Reference URI="http://www.w3.org/TR/xml-stylesheet">

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

 <ds:DigestValue>60NvZvtdTB+7UnlLp/H24p7h4bs=</ds:DigestValue>

</ds:Reference>

Example 4-1: <Reference> element
57

4 Canonical XML and XML Signature
This implies a duality of de-referenced contents: it is determined at runtime
whether the de-referenced contents are represented as an octet stream or an
XPath node-set, so the signature software must handle this duality.
The XML Signature recommendation defines the behavior for some very com-
mon types of URI:

❏ URI="http://example.com/1.gif"

The resource is an image file in GIF format. The file is fetched from the
site example.com using the HTTP protocol. This reference URI returns
an octet stream.

❏ URI="http://example.com/bar.xml"

The resource (file) bar.xml is fetched from the site example.com using
the HTTP protocol. This reference URI returns an octet stream, regard-
less that the resource itself is (probably) an XML instance.

❏ URI="http://example.com/bar.xml#chapter1"

Identifies the element with ID attribute value 'chapter1' of the external
XML resource 'http://example.com/bar.xml', again provided as an
octet stream. Again, for the sake of interoperability, the element identi-
fied as ‘chapter1’ should be obtained using an XPath transform rather
than a URI fragment.

❏ URI=""

This same-document URI returns an XPath node-set which contains all
nodes from the XML document in which the signature itself reside, with-
out any comment nodes.
A very common mistake by XML Signature newbies is to assume that
comment nodes are available after URI="" is de-referenced.

❏ URI="#xpointer(/)"

This same-document URI returns an XPath node-set which contains all
nodes from the XML document in which the signature itself reside,
including all comment nodes.

❏ URI="#paragraph1"

This same-document URI returns an XPath node-set which contains all
nodes which have the element with an ID attribute of value "para-
graph1" on the ancestor-or-self axis, without any comment nodes.
Simply speaking, the subtree (minus the comments) rooted by the ele-
ment with a "paragraph1" ID.

❏ URI="#xpointer(id(’paragraph1’))"

This same-document URI returns an XPath node-set which contains all
nodes which have the element with an ID attribute of value "para-
graph1" on the ancestor-or-self axis, including the comment nodes.
Simply speaking, the subtree rooted by the element with a "para-
graph1" ID.
58

4.2 XML Signature
The above URI-References can be divided into two classes: ‘regular’ and
‘same-document’ URIs. A URI points to the signed resource. A reference
pointing to some external file is simply a URI. A subclass of URIs are ‘same-
document’ URIs: A same-document URI references to a node set in the same
document in which the Signature resides. The URIs "", "#foo", "#xpointer(/
)" and "#xpointer(id(’foo’)" reference nodes in the same document.

4.2.3.3 TRANSFORMATION OF RESOURCES USING TRANSFORM ELEMENTS

The XML Signature recommendation introduces a new mechanism for trans-
forming resources: the optional <Transfoms> element. Without transforms,
the de-referenced contents are directly used as input for the hash function to
calculate the cryptographic hash value. Transforms enable the signature to
extract the relevant information out of the de-referenced data or to unify (e.g.
canonicalize) the de-referenced data.
The <Transfoms> element contains one or more <Transfom> elements which
describe a single transform. Like mentioned earlier, these transforms are
applied subsequently to the de-referenced contents. The output of the last
transform is converted to an octet sequence which is used as input to the
hash function.
Conversion between octet streams and XPath node-sets: De-referencing the
URI can result in either octet streams or in XPath node-sets; hash functions
can only calculate the hash value of octet streams. Some transforms need
octet streams as input, some need XPath node-sets, and others can handle
both. The XML Signature recommendation defines how to convert octet
streams into XPath node-sets and vice versa:

❏ Octet streams are converted into XPath node-sets by parsing the octet
stream.

❏ XPath node-sets are converted into octet streams by applying Canonical
XML (without comments).

The Canonical XML recommendation only defined “Canonical XML (omitting
comments)” as mandatory, so the XML Signature recommendation follows that
path.
The concept of transforms is a powerful mechanism which enables arbitrary
transformations on the input data; all transforms have to goal to filter the input
data so that the important, to be signed information, is extracted and to make
the data unambiguous. The XML Signature recommendation introduces five
different transforms:

❏ Canonicalization with and without comments: The input is treated as
XML and the canonical form is computed.

❏ Base64 decoding: The input is treated as a text which consists of base64
encoded octets. The output is the decoded octet stream.

❏ XPath filtering: The XPath filter takes an XPath node-set as input and
evaluates an XPath supplied in the transform to each node in the input
node-set. The result of the XPath evaluation is converted to a Boolean
59

4 Canonical XML and XML Signature
value. If it evaluates to true, the particular node is included in the result
node-set.

❍ The XPath transform has a high computational overhead: The
XPath must be executed on every node in the input node-set. If the
input to the transform consists of all nodes from a large document,
this is a very costly process.

❍ The XPath transform uses the XPath which is to be used is stored
inside a <XPath> element which is a child of the <Transform> ele-
ment.

❏ Enveloped signature: “The enveloped signature transform T removes
the whole <Signature> element containing T from the digest calcula-
tion of the Reference element containing T.” [ERS02]
This transform is the foundation for enveloped signatures: a signature
can “remove” itself from hash value input.

❏ XSLT (eXtensible Stylesheet Language Transforms): the XSLT [Clark99]
transform allows transforming an XML tree into another tree, based on
transform instructions which are stored inside a stylesheet. This
stylesheet is included as a child of the <Transform> element.
The XSLT transform enables XML Signature to perform sophisticated
tree operations: the vision of WYSIWYS (“What you see is what you
sign”) becomes realistic.
The XML recommendation does not define a user-representation for
arbitrary XML structures. XML by itself is only structured data without
any display and rendering capabilities. XSLT can be used to transform
XML into a representation which is displayed to a user, e.g. XML can be
rendered into XHTML for web browsers or into WML (“Wireless Markup
Language”) for mobile devices like mobile phones or PDAs. Given the
XSLT transform, the user does not sign the initial XML structure or parts
thereof but the result of the XSLT transform which is displayed to the
user.
Nevertheless, this displayed view is computed just-in-time during signa-
ture generation/validation. This means that the application can process
the original tree structure. The rendering into a human representation is
only required for generation and validation of signatures.

The transforms architecture was designed with extensibility in mind; every
<Transfom> element can contain an arbitrary XML structure as its children.
The transform itself is identified by its algorithm identifier (the ds:Trans-
form/@URI attribute). These both properties (arbitrary transforms through the
algorithm identifier and arbitrary execution content through the children of
<Transform>) allow the users to deploy custom transform algorithms if the
existing set does not fulfill their needs.
An example for the concept of Transforms could be a canonicalization algo-
rithm for binary images. A user who looks at a displayed image in a web
browser does not care about the images encoding. It makes no difference
60

4.2 XML Signature
whether the image is in GIF, PNG, TIFF or JPEG format (given that the com-
pression is not too bad that he sees no artifacts and that the resolution (size)
of the images is nearly the same). The only necessary requirement is that the
visualization of the image remain the same, regardless which encoding was
used. Different encodings of the same image result in completely different
hash values.
A canonicalization transform for images would allow signing the contents of
an image, and allowing to transcode the image into different representations
(formats) without breaking already existing signatures. Such a transform must
be designed carefully so that it does not discard security-relevant image infor-
mation, but robust enough to allow small, invisible modifications and
transcodings.

4.2.4 SignedInfo element
A Reference contains a pointer to the signed information (URI). Optionally
processing steps (Transforms) in the Reference can be used to extract and
unify the relevant information. Additionally, the Reference contains the hash
function used for calculation of the hash value and the literal hash value of the
relevant information itself. This section introduces a container for references.
The <SignedInfo> element is the hash value/URI collection mentioned earlier
in “Data integrity algorithms” on page 20. A <SignedInfo> contains one or
more <Reference> elements which bind the signed resources to the hash val-
ues. For each signed resource, a <Reference> is included in the
<SignedInfo>. Each signature must have exactly one <SignedInfo> element
to indicate what is signed by the signature (see figure 4-5 on page 62).
The <SignedInfo> itself is not the signature, but an intermediary list of hash
values (more exactly <Reference>s).
Generating the <SignedInfo> does not require the usage of a private or secret
key, as only hash values are generated. Nevertheless, great care must be taken
that no sensitive material is exposed as part of the <SignedInfo> element:
careless use of URLs in the URI attribute can expose confidential information,
e.g. passwords for HTTP realms or other credentials.
The SignedInfo is the final object what is being signed by the cryptographic
signature or MAC algorithm. For that purpose, the SignedInfo is canonicalized
and the resulting octets are processed by the cryptographic signature or
(H)MAC algorithm.
The algorithms used for canonicalization and signature/MAC computation are
also included in the <SignedInfo> element using the <Canonicalization-
Method> element and the <SignatureMethod> element. Including this infor-
mation inside the SignedInfo ensures that these values are covered by the
signature value and prevents sustitution of these algorithms by weaker ones:
For instance, a hostile canonicalization algorithm could rewrite <Reference>
structures so that a signature is always true.
61

4 Canonical XM
L and XM

L Signature

62

L Signature

signature
valuemessage

authentication code function

signature
n

private key

secret key

<ds:SignatureValue>
Figure 4-5: Signature value generation for XM

digital
functio

<ds:SignedInfo>

hash value 1

address 1

digest method
algorithm ID 1

digest method
algorithm ID 2

address 2

description of
transformations 2

hash value 2

digest method
algorithm ID n

address n

description of
transformations n

hash value n

data item 1

address of
data item 1 hash function

data item 2

address of
data item 2 transformations hash function

data item n

address of
data item n transformations hash function

signature method
algorithm ID

4.2 XML Signature
4.2.4.1 SIGNATUREVALUE ELEMENT

After all signed contents are referenced using the SignedInfo, the SignedInfo is
canonicalized using the c14n algorithm from the <CanonicalizationMethod>
element and the resulting octets are signed using the signature or MAC algo-
rithm from the <SignatureMethod> element. The resulting signature value is
base64 encoded and stored inside the <SignatureValue> element which is a
direct child of the <Signature> element.

4.2.4.2 COMPLEX TRANSFORMS VS. MULTIPLE REFERENCES

It was mentioned earlier that for each signed resource, a <Reference> is
included in the <SignedInfo>. This allows signing external resources by using
URIs which are not same-document URIs (‘same-document URIs’ are
explained on page 59). Multiple parts of the same XML document are to be
signed using same-document URIs. It depends on semantics of the signed con-
tents and on the application, whether all these parts are signed using a single
<Reference> or multiple ones.
To illustrate this (figure 4-6 on page 64), consider a document with multiple
enveloped signatures. The document is segmented into different content para-
graphs which are signed in different constellations; e.g. signature_1 signs
paragraph_2 and paragraph_1 while signature_2 signs paragraph_3 and
paragraph_1.
This gives the developer two options on how to construct the references:

❏ the first one is to sign both paragraphs using a single reference; this
requires a complicated XPath transform to selects the right nodes out of
the document; or

❏ to sign both paragraphs using two separate references without need for
complicated selection transforms. In this second form, the both refer-
ences which sign paragraph_1 look completely the same if they use the
63

4 Canonical XML and XML Signature
same hash function. The second approach can make clearer what has
been signed, because the individual <Reference>s are simpler.

The XPath transform defined in [ERS02] has a high computational overhead (as
discussed on page 59). Therefore, the XML Signature working group created
an additional transform called “XML-Signature XPath Filter 2.0” [BHR02].
XFilter2 specifies a second XPath transform which allows easier selection of
portions of the XML document using union/intersect/subtract mechanisms.

4.2.5 Key Management using the KeyInfo element
XML Signature does not enforce usage of a particular signature scheme
(although the implementation of some algorithms like DSA or HMAC-SHA1 is
mandatory). The same freedom of choice is offered for the key management:
XML Signature provides a generic container for key management information:
the <KeyInfo> element. This container allows transportation of both identifi-
cation information for keys and certificates and the values of the keys and cer-
tificates itself. This key material is needed to validate the signature. Different
types of key information can be embedded into the signature. This is done by
adding child elements to the <KeyInfo> element. Multiple items in the
<KeyInfo> must all refer to the same key. The following list gives an overview
of the specified mechanisms:

Figure 4-6: Reference design

signature_1

reference_3

reference_4

signature_2

reference_5

reference_6

Document

paragraph_1

paragraph_2

paragraph_3

signature_1

reference_1

signature_2

reference_2

Document

paragraph_3

paragraph_2

paragraph_1

Few references,
complicated transforms,

complicated areas

Many references,
no transforms,

clear areas,
reference_4 and reference_6 are equal
64

4.2 XML Signature
❏ The <KeyName> element contains a simple String which identifies a par-
ticular key. That can be an identifier for public keys (for use with signa-
ture algorithms) as well as an identifier for secret keys (for HMAC
algorithms). The <KeyName> can only be used in a particular application
context, as there is no commonly agreed standard on how to resolve a
<KeyName> to a key or certificate.

❏ The <KeyValue> element is a container for carrying plain (literal) public
keys. For obvious reasons, it does not make sense to include secret keys
in the clear, because that would compromise the security of a HMAC.
(The same <KeyInfo> element can contain an additional X.509 certifi-
cate. The <KeyValue> must contain the same public key as the ASN.1
encoded X.509 certificate.) The <KeyValue> element does carry the key
in nested elements which indicate the type of the key.

❍ The <DSAKeyValue> element contains the <Y> element for the
parameter of the DSA public key and optionally the elements <P>,
<Q>, <G> and <J> as well as <seed> and <pgenCounter> for DSA
prime generation as defined by [FIPS186-2].
All these values are integer values encoded in base64 format.

❍ The <RSAKeyValue> element contains the <Modulus> and the
<Exponent> of the RSA public key, which are also base64 encoded
integer values.

❏ The <RetrievalMethod> element is used for retrieving the key material
from another location. This level of indirection allows that multiple sig-
natures point to a key or certificate which is only included once in the
document. The RetrievalMethod provides the same means for de-refer-
encing contents like a Reference, i.e. it uses a URI attribute and allows
optionally provided Transforms for retrieving and transforming a
resource until the final key is selected. The difference is that the result of
de-referencing and transforms is not digested but provided as key mate-
rial.
The RetrievalMethod additionally provides a Type attribute which can
be used for stating which type of key is provided after de-referencing.

❏ X.509 certificates are very important in public key crypto systems. The
<X509Data> element is a container for storing various X.509 related data
items:

❍ The <X509Certificate> element contains a base64 encoded
X.509 certificate.

❍ The <X509IssuerSerial> element contains the distinguished
name of the certificates issuer and the certificate serial number.

❍ The <X509SubjectName> element contains the distinguished name
of the subject of the X.509 certificate.

y

65

4 Canonical XML and XML Signature
❍ The <X509SKI> element allows providing the base64 encoded
SubjectKeyIdentifier X.509v3 extension of the certificate.

❍ For transporting base64 encoded X.509 certificate revocation lists
(CRLs), the <X509CRL> element is provided.

❏ For re-using OpenPGP key material in XML Signature, the standard pro-
vides the <PGPData> element for PGP public key identifiers using
<PGPKeyID> children and/or <PGPKeyPacket>s for transporting the PGP
key itself.

❏ Transporting SPKI public keys [EFLR+99], certificates and SPKI related
material is enabled through the <SPKIData> element.

❏ The <KeyInfo> element is able to contain arbitrary elements. Even pure
text can be stored in it. This is the maximum level of extensibilitym
which allows custom solutions to be implemented in an easy way.

❏ A different way to include arbitrary contents in <SignedInfo> is by
using the <MgmtData> element. This element can carry text data as a syn-
tactic hook for in-band key distribution or key agreements. However, the
usage of the MgmtData mechanism is not recommended by the XML Sig-
nature Recommendation, as no explicit semantics is defined for <Mgmt-
Data>. Instead, specific child elements should be defined, like done for
W3C XML Encryption.

4.2.6 Embedded objects for enveloping signatures - the Object
element

The <Object> element provides a mechanism for embedding arbitrary infor-
mation into a signature. A signature can contain an arbitrary number of
objects. Depending on the application requirements, these objects can be
included in the signing process, so <Object>s can be signed or unsigned con-
tainers. An <Object> container enables the creation of enveloping signatures,
i.e. signatures which contain the signed contents.
<Object>s can either carry base64 encoded binary data or XML structures.
XML structures inside an <Object> are directly addressable using standard
XML mechanisms, so that even applications which cannot process XML Signa-
tures can access the object’s content. The process of unwrapping the signed
contents becomes much easier as for PGP or S/MIME because the signed XML
content is already unwrapped.
66

5 Confidentiality Systems – State of
the Art

On the internet, various systems for data confidentiality are in wide use. In
this chapter, well-known ones like SSL/TLS, IPSec, PGP, S/MIME and W3C XML
Encryption are described. Additionally to these encryption based systems,
XML Access Control is mentioned.

5.1 Encryption of Unstructured Data
Many encryption systems today are able to encrypt arbitrary types of data.
These systems do not need knowledge about the internal structure of the
plaintext data. This enables encryption of arbitrary plaintext formats. For
instance, SSL/TLS encrypts TCP (transport layer) network connections regard-
less of the transmitted payload’s structure. PGP and S/MIME encrypt arbitrary-
files and email attachments, regardless of the file’s or attachment’s internal
data structure.

5.1.1 Example: IP Security Protocol (IPSec)
The “IP Security Protocol” (IPSec) Working Group [FraTs02] created a set of
specifications which define security services for the IP layer. These security
services include confidentiality and integrity. IPSec key management allows
usage of X.509 certificates and OpenPGP keys.

5.1.2 Example: Transport Layer Security (TLS)
The most common encryption mechanism on the internet is the “Secure
Socket Layer” (SSL) protocol respective its successor, the “Transport Layer
Security” (TLS) protocol [DiAl99]. TLS is used to provide confidentiality, data
integrity and peer-entity authentication for TCP connections. After creating a
TCP/IP connection between TLS client and TLS server, the SSL/TLS session is
established to provide the above security services. During the handshake
phase, symmetric keys are generated which are used for transparently
encrypting the communication between both parties. After establishing the
TLS session, application data is transparently transmitted through the
encrypted tunnel.

5.1.3 Example: S/MIME
“Secure MIME” (S/MIME) is primary used for encrypting (and signing) E-mail
and is a standard specified by the IETF in [Rams99]. Generally, it can be used
in any protocol which utilizes MIME (“Multipurpose Internet Mail Exten-
sions”, defined in [FrBo96]) for segmenting messages.
Message format: S/MIME uses the “Cryptographic Message Syntax” (CMS)
[Hous99] as syntax for protected messages. S/MIME provides data origin
authentication and confidentiality for MIME messages. CMS is defined using
67

5 Confidentiality Systems – State of the Art
the ASN.1 language [ITU-T X.680 | ISO 8824] for structuring the message’s
envelope.
Key material: S/MIME relies on X.509 certificates. The family of S/MIME
related standards defines how to use various symmetric and asymmetric
encryption, digital signature, MAC and digest algorithms.
Binding between data and management information: The basic data item
which can be signed or encrypted in S/MIME is a MIME body part. S/MIME
can only refer to signed and encrypted data inside the same MIME message.

5.1.4 Example: OpenPGP
The “OpenPGP”-Format, defined by the IETF in [CDFT98], is the official stan-
dardization of the “Pretty Good Privacy” (PGP) message format, originally
defined by Phil Zimmermann. OpenPGP compatible implementations provide
the security services data origin authentication and confidentiality for E-mail
messages and files.
Message format: OpenPGP is an independent message format that is not com-
patible with the S/MIME message format.
Key material: Additionally to secure messages, OpenPGP defines a format for
representing private and public keys and for signed public keys. Signing pub-
lic keys enables OpenPGP users to create a “web of trust” by cross-certifying
each others public key. As a result, the PGP trust model does not require a
centralized key management authority like a certificate authority which issues
X.509 certificates. Nevertheless, the PGP web of trust can be built on a cen-
tralized key certification architecture.
Binding between data and management information: The binding between
an OpenPGP signature and the signed data can be in two different ways:
When used in E-mail, the signature surrounds the signed text in the same
MIME body part. When encrypting E-mail, the envelope replaces the
encrypted body. When signing files in a file system, the binding is done using
the filename: The signature has the same filename as the signed file, but a
.sig extension is added to the filename. When signing the file 1.txt, the sig-
nature is in 1.txt.sig.
Additionally to encrypting individual files or attachments, commercial ver-
sions of PGP offer a tool called PGPDISK which can be used for emulating
harddrive volumes under Microsoft Windows.

5.2 Selective Field Confidentiality
[ITU-T X.800 | ISO 7498-2] introduces “selective field confidentiality” as a
service for encrypting only selected parts (fields) of a data item:

“This service provides for the confidentiality of selected fields
within the (N)-user-data on an (N)-connection or in a single
connectionless (N)-SDU.”

This is a general-purpose description for creating application oriented encryp-
tion systems which encrypt only parts of the user data. This requires that the
68

5.3 W3C XML Encryption
data to be secured has an internal structure. As internal structure is applica-
tion dependent, each application must define its own mechanism on how
selective field confidentiality is implemented. The specific implementation
i.e. which fields have to be kept confidential depends on the application sce-
nario and on the data structure. This service can be applied to (parts of) pro-
tocol messages, selected fields in databases or (parts of) documents.

5.3 W3C XML Encryption

5.3.1 Introduction
The W3C XML Encryption Recommendation [ER02] specifies a confidentiality
security mechanism for XML. When talking about “XML Encryption” in this
document, the W3C document “XML Encryption Syntax and Processing Rec-
ommendation” [ER02] is meant. As already seen in the XML Signature recom-
mendation, customizing a security mechanism for XML offers various benefits:

❏ An XML element containing XML Encryption information can act as a
container for encrypted data (payload) or as container for encrypted key
material (key management) or both.

❏ XML Encryption is capable to encrypt user data like

❍ complete XML documents,

❍ single elements (and all their descendants) inside an XML docu-
ment,

❍ the contents of an element (some or usually all child nodes (and all
their descendants)) inside an XML document or

❍ arbitrary binary contents outside of an XML document.

❏ XML Encryption allows direct inclusion of the encrypted contents into
the container or to de-reference the encrypted contents via the URI/
Transforms mechanism already known from XML Signature.

❏ XML Encryption offers key management facilities for

❍ symmetric wrapping of secret keys (secret key needed to retrieve
secret key)

❍ key transport of secret keys (private key needed to retrieve secret
key)

❍ key agreement using Diffie-Hellman

Related to encrypting XML, the W3C XML Encryption Recommendation
allows two different granularity levels: the encryption of full subtrees (a single
element and all its descendants) or sequences of subtrees (whereas a subtree
can be a single node like a text node or also a mixed sequence of comments,
elements, text and processing instructions). Encrypting an element always
69

5 Confidentiality Systems – State of the Art
implies encryption of all descendants of that element. Figure 5-1 on page 70
illustrates these possibilities:

❏ Example A in figure 5-1 shows the encryption of the subtree rooted by
the element ‘X’. The element and all its descendants are encrypted into
a single <xenc:EncryptedData> element. The Type attribute has a value
of "&xenc;#Element". The decryption result must be a single element
(which itself may have arbitrary children).

❏ Example B in figure 5-1 shows the encryption of the content of element
‘X’. All children of the element and their respective descendants are
encrypted into a single <xenc:EncryptedData> element. The Type
attribute has a value of "&xenc;#Content".

❏ Example C in figure 5-1 shows subtree encryption applied three times to
each child of element ‘X’. Each subtree rooted by a child node of ele-
ment ‘X’ is encrypted into a separate <xenc:EncryptedData> element.
The difference to example B is that three independent encryptions are
performed. Each encryption can have different encryption properties.
Encrypting multiple child nodes of an element usually refers to encrypt-
ing all children of the given element (like in example B). XML Encryp-
tion implementations must be aware to handle such a use case
appropriately.

❏ Example D in figure 5-1 shows another way to use content encryption:
two subsequent subtrees are grouped together and are encrypted
together. This is a special case of example B which shows that even
parts of the children can be encrypted, as long as they are direct sib-
lings. This could even be used to split a single Text node (a sequence of
multiple character information items) into encrypted and unencrypted
parts.

Figure 5-1: W3C XML Encryption modes

Element
'X' encrypted

X

A

Full content of Element
'X' encrypted

X

B

Full content of Element
'X' encrypted

as three subtrees

X

C

Part of content of
Element 'X' encrypted

X

D

70

5.3 W3C XML Encryption
Like example C, this use case is also an obfuscated example on what is
possible with XML Encryption but is not explicitly defined in the spec.

The decryption of the examples A and C leads to single elements, i.e. the
decrypted octets can be parsed directly by the XML parser. The octets result-
ing after decryption of examples B and D are not directly parseable, but must
be wrapped into a start-tag/end-tag combination. The “XML Fragment Inter-
change” [GroVei01] introduces the term “well-balanced” to describe (part of)
the content of an element:

“A region (consecutive sequence of characters) of an XML doc-
ument is said to be (well-)balanced if it matches production “43
content” of XML 1.0. Informally this means that, if the region
includes any part of the markup of any construct, it contains
all of the markup of that construct (e.g., in the case of elements,
all of both the start and end tag).” [GroVei01]

This means that every octet sequence which is allowed to occur between the
start- and end-tags of an element is well-balanced, e.g. "foo <a/>q". Well-
balanced content is data that is allowed as element content.

5.3.2 Encryption for multiple recipients

5.3.2.1 ENCRYPTING THE SAME CONTENT

Encrypting a given resource for multiple recipients can be done in different
ways. The trivial case is that all recipients are allowed to see the same por-
tion(s) of the document. In that case, the content is only encrypted once,
whereas the content encryption key is encrypted multiple times, once for
each recipient. Such a document contains a single <xenc:EncryptedData> ele-
ment for the encrypted content and for each recipient an
<xenc:EncryptedKey> element which contains the content encryption key
encrypted under the recipient’s key.
71

5 Confidentiality Systems – State of the Art
5.3.2.2 SUPER-ENCRYPTION

Another way to encrypt contents for multiple recipients applies when the
recipients are allowed to see different portions of a given document, i.e. when
encrypted contents are encrypted multiple times (see figure 5-2).

Encrypting parts of an XML tree leads to substitution of the plaintext structure
with an <xenc:EncryptedData> element. Super-encryption applies when this
<xenc:EncryptedData> element and some of its siblings or ancestors are by
itself encrypted.
In figure 5-2, the subtree rooted by element T is encrypted under a key B for a
recipient B. After that first encryption step, the subtree rooted by the
element S is encrypted under key A for the recipients A and B. Recipient B
possesses the keys A and B. Recipient A only possesses key A.
After the two subsequent encryption steps, the document contains the R ele-
ment and two unencrypted nodes as well as an <xenc:EncryptedData> ele-
ment which contains the encrypted element S and its descendants.
Both recipient A and recipient B can decrypt the outer
<xenc:EncryptedData> element as both recipients possess key A. The
decrypted element S contains the inner <xenc:EncryptedData> element.
Only recipient B can decrypt the inner <xenc:EncryptedData> element as
only recipient B possesses key B.
Recipient A is aware of the existence of a part in the document which he is
not able to decrypt; there is information leakage to recipient A that more pow-
erful users of the system exist. The term ‘powerful’ refers to the ability to
decrypt content. ‘More powerful’ means more content can be decrypted as
the powerful user possesses more keys than a less powerful user.
Based on the number of octets of the undecryptable ciphertext, recipient A
can make good estimation on how large the undecrypted plaintext is.
Recipient B possesses both content decryption keys A and B and performs
decryption in two steps: After decrypting the <EncryptedData> element

Figure 5-2: W3C Super-Encryption: Encrypting <EncryptedData>

View of user BView of user ACiphertext

(2) Encrypted under
key A for user A
and user B

(1) Encrypted under
key B for user B

S S

T T

Encrypted under
key B for user BS

R R R

R

EncryptedData S

EncryptedData T
72

5.3 W3C XML Encryption
which contains the S plaintext, the <EncryptedData> element containing T is
decrypted. After both decryption steps, the document is completely
decrypted and fully available to recipient B. Recipient B is aware that the
super-encryption of the innermost <EncryptedData> is (certainly) done in
order to prevent other users from accessing the inner information. So there is
information leakage to recipient B that (1) he was able to decrypt the full doc-
ument and that (2) there may exist other users which are not allowed to see
the contents of the inner envelope.
So information leaks to all users about their own decryption capabilities com-
pared to the capabilities of other users.

5.3.3 Serialization of XML for XML Encryption
For encrypting large amounts of data, usually symmetric encryption algo-
rithms are used. Symmetric encryption algorithms transform a plaintext octet
string into a ciphertext octet string and vice versa. XML itself is a tree–struc-
ture which must be converted into an octet string prior encryption and con-
verted back from an octet string to a tree–like structure after decryption.
For encrypting parts of an XML document, the encrypting application selects
a well-balanced piece of XML and serializes it into a UTF-8 encoded octet
sequence.
Special care must be taken on namespace nodes and attributes in the XML
namespace: Moving encrypted data into a different context can lead to an
inconsistent result after decryption. This happens if the decrypted plaintext
uses namespace prefixes without defining them.
To illustrate the problem, the octets of the element in the example 5-1 are
moved to another context.

In the XML code in example 5-1, the <a> element contains the declaration of
the foo namespace. If the element is improperly serialized like in example
5-2, it looses information which namespace was bound to the foo prefix:

After inserting the octets from example 5-2 into another context like in exam-
ple 5-3, the result is useless.

<a xmlns:foo="http://foo.com/">

 <b foo:attr="some attr which utilizes the foo namespace" />

Example 5-1: Octet sequence in original context

<b foo:attr="some attr which utilizes the foo namespace" />

Example 5-2: Insufficiently serialized element

<anotherA xmlns="http://bar.com/#movesBToWrongDefaultNamespace">

 <b foo:attr="some attr which utilizes the foo namespace" />

</anotherA>

Example 5-3: Wrong insertion into different context
73

5 Confidentiality Systems – State of the Art
There does not exist any information which namespace was bound to the foo
prefix. This leads to the problem that the moved octets cannot parsed with a
namespace enabled parser. Additionally, the element which has not been
in a namespace in the example 5-1 context is in a wrong default namespace in
example 5-3. The missing foo declaration can be avoided by canonicalizing
the octets. The problem with the wrong default namespace can only be
avoided by explicitly stating that the default namespace is empty.
In example 5-4, a representation of the element which contains all rele-
vant information is.

All infoset information is preserved, if the snippet from 5-4 is moved to
another (arbitrary) context like in example 5-5:

Canonical XML can solve a part of the problem. Problems occur if a docu-
ment subset is to be canonicalized which has some namespace nodes omitted
from the document subset. In that case, it’s possible that the result of canoni-
calization is not parseable. Additionally, Canonical XML does not emit an
xmlns="" declaration in apex nodes; but this is necessary (see above). The
term ‘apex node’ refers to the “Exclusive Canonical XML” recommendation:
“An apex node is an element node in a document subset having no element
node ancestor in the document subset.” [BER02]
Special care must also be taken for xml:* attributes. If e.g. Exclusive XML
Canonicalization is used for serialization of the plaintext and if the
decrypted plaintext is placed into a different context, the new context may
have e.g. a different value for the xml:base attribute which would result in
errors while retrieving relative URIs (see the XML Encryption spec [ER02] for
a detailed discussion of that topic.).

5.3.4 An Example of XML Encryption
To show how XML Encryption can look like in practice, consider the plaintext
in example 5-6 (taken from [ER02]), which represents a payment transaction
containing public information (like the name of the account owner) and con-
fidential information (the credit card data).

<b xmlns="" xmlns:foo="http://foo.com/"

 foo:attr="some attr which utilizes the foo namespace" />

Example 5-4: Correct serialization of element

<anotherA xmlns="http://bar.com/#movesBToWrongDefaultNamespace">

 <b xmlns="" xmlns:foo="http://foo.com/"

 foo:attr="some attr which utilizes the foo namespace" />

</anotherA>

Example 5-5: Correct insertion into different context

<?xml version='1.0'?>

<bank:PaymentInfo xmlns:bank="http://example.org/paymentv2">

 <bank:Name>John Smith</bank:Name>

Example 5-6: Sample plaintext prior W3C encryption
74

5.3 W3C XML Encryption
The result could like in example 5-7, if the <bank:CreditCard> element is
selected for encryption (encrypting the complete subtree).

The <bank:CreditCard> element was substituted by an
<xenc:EncryptedData> element of type Element. The
<xenc:EncryptedData> element contains the <xenc:CipherData> element
which uses a <xenc:CipherValue> element for storing the serialized and
encrypted <bank:CreditCard> element and all its descendants.

5.3.5 Ciphertext Locations
The above example uses the <xenc:CipherValue> to include the ciphertext
directly in the <xenc:EncryptedData>. W3C XML Encryption also allows cre-
ating a reference to the ciphertext using the <xenc:CipherReference> ele-
ment, which is similar to the <Reference> element from the XML Signature
recommendation: The @URI attribute is used to identify the location of the
ciphertext. An optional <xenc:Transforms> element can be used to ‘mangle’
the de–referenced contents until the ciphertext is extracted. This works the
same way the <Transforms> element works for signed contents.
This mechanism allows storing ciphertext in detached locations:

❏ elements in the same document or

❏ an XML file which contains base64 encoded ciphertext, which is
extracted using XPath transforms.

❏ a non-XML resource somewhere on the network, e.g. like a streaming
audio or video file or

❏ a non-XML resource on another place which can be identified by URI,
e.g. a file on the local hard disk.

 <bank:CreditCard Limit="5,000" Currency="USD">

 <bank:Number>4019 2445 0277 5567</bank:Number>

 <bank:Issuer>Example Bank</bank:Issuer>

 <bank:Expiration>04/02</bank:Expiration>

 </bank:CreditCard>

</bank:PaymentInfo>

<?xml version='1.0'?>

<bank:PaymentInfo xmlns:bank="http://example.org/paymentv2">

 <bank:Name>John Smith</bank:Name>

 <xenc:EncryptedData

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

 Type="http://www.w3.org/2001/04/xmlenc#Element">

 <xenc:CipherData>

 <xenc:CipherValue>A23B45C56</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedData>

</bank:PaymentInfo>

Example 5-7: Plaintext after partly W3C XML encryption

Example 5-6: Sample plaintext prior W3C encryption
75

5 Confidentiality Systems – State of the Art
5.3.6 XML Encryption Key Management
In the above example, there is no provision to describe which key is neces-
sary for decryption. XML Encryption offers three ways how encrypted data
and its associated key can ‘find’ each other:

❏ An <xenc:EncryptedData> element (as well as the
<xenc:EncryptedKey> element) can contain an optional <KeyInfo> ele-
ment for carrying key management information (encrypted data points
to key).

❍ The <KeyInfo> of a <xenc:EncryptedData> refers to a content
encryption key.

❍ The <KeyInfo> of a <xenc:EncryptedKey> refers to a key encryp-
tion key.

❏ An <xenc:EncryptedKey> element can contain a reference to the data or
key material encrypted under this key (key points to encrypted data).

❍ The <xenc:DataReference> of a content encryption key points to
an <xenc:EncryptedData>.

❍ The <xenc:KeyReference> of a key encryption key points to an
<xenc:EncryptedKey>.

Figure 5-3: Reference from data to key

Figure 5-4: Reference from key to data

ds:KeyInfo

xenc:EncryptedKey

xenc:CipherData

Content Encryption Key

xenc:EncryptedKey

xenc:CipherData

Key Encryption Key

ds:KeyInfo

xenc:EncryptedData

xenc:CipherData

Content

xenc:EncryptedKey

xenc:CipherData

Content Encryption Key

Encrypted content (data) refers to the content encryption key Some key refers to the key encryption key

xenc:EncryptedKey

xenc:CipherData

Content Encryption Key

xenc:EncryptedKey

xenc:CipherData

xenc:ReferenceList

xenc:KeyReference

Key Encryption Key

xenc:EncryptedData

xenc:CipherData

Content

xenc:EncryptedKey

xenc:CipherData

xenc:ReferenceList

xenc:DataReference

Content Encryption Key

Content encryption key refers to the encrypted content (data) Key encryption key refers to another key
76

5.4 Information Disclosure in Encryption Systems
❏ The binding between key and encrypted data can be implicitly defined
for the processing application, i.e. there is no reference inside the key or
the encrypted data. For example, an application could use only one pre-
defined key.

References to key material can be recursive. That chain of references must be
followed until the decryptor determines the final key. For instance,

❏ the encrypted data payload was encrypted under a symmetric content
encryption key K1.

❏ K1 itself is encrypted under the symmetric key encryption key K2.

❏ K2 is encrypted under the symmetric key K3.

❏ K3 is encrypted under a public key with a given KeyName.

Such a chain must be followed until all key material required to decrypt the
contents is available. This powerful construct can lead to an infinite recursion,
if an attacker creates a structure where two keys reference each other for
decryption: Such a malicious structure could claim that key A was encrypted
under key B and key B was encrypted under key A. Implementations of XML
Encryption must be aware of this threat and defeat it by detecting loops and/
or by limiting the amount of computing and/or network resources which can
be consumed by a key retrieval process.

5.3.7 XML Key Management
The W3C XML Key Management Recommendation [Hal02] specifies proto-
cols for distributing and registering public keys. It is intended to be used by
XML Signature and XML Encryption. The “XML Key Management Specifica-
tion” (XKMS) comprises two parts — the “XML Key Information Service Spec-
ification” (X-KISS) and the “XML Key Registration Service Specification” (X-
KRSS).

5.4 Information Disclosure in Encryption Systems
Based on the ciphertext size (number of octets), an attacker can deduce the
approximate size of the plaintext. Generally, systems can be constructed
which provide traffic flow confidentiality or to hide the size of the ciphertext.

Figure 5-5: No reference between data and key

xenc:EncryptedData

xenc:CipherData

Content

xenc:EncryptedKey

xenc:CipherData

Content Encryption Key

No direct binding between data and key
77

5 Confidentiality Systems – State of the Art
Implementations like TLS, IPSec, S/MIME and PGP do not offer any provisions
for providing traffic flow confidentiality or hiding the content size.
W3C XML Encryption offers two different ways to handle ciphertext (see
5.3.5 “Ciphertext Locations” on page 75):

❏ store the ciphertext in an <xenc:CipherData> element or

❏ use a link to the ciphertext with an <xenc:CipherReference>.

If the ciphertext is directly included using a <xenc:CipherData> element, an
attacker can make an estimation about the size of the plaintext, like in encryp-
tion systems for unstructured data.
Using a <xenc:CipherReference> can hide the ciphertext from an attacker, if
the ciphertext is stored in an access control restricted area. For instance, the
ciphertext could be stored in a password protected area of a web server, so
that the ciphertext is only disclosed to the decryptor if the decryptor has suf-
ficient credentials to fetch the ciphertext.
An example for such a <xenc:CipherReference> element is shown in exam-
ple 5-8.

The ciphertext is stored in an XML instance which can be fetched at the URI
"http://user@intranet.corp.com/cipherData?id=cipher3982".
The "user@" prefix in front of the host name indicates that the HTTP server
requires an authentication with the user name "user". Additionally to the
user name, a credential like a password or a cookie is needed which has to be
supplied by the decryptor and which is not included in the given HTTP URL.
Therefore, only authenticated users are able to see the size of the ciphertext.
In this example, the encryption mechanism provides confidentiality for the
content, whereas the access control mechanism provides confidentiality for
both content and content size.

<EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'

 Type='http://www.w3.org/2001/04/xmlenc#Content'>

 <CipherData>

 <CipherReference URI="http://user@intranet.corp.com/cipherData?id=cipher3982">

 <Transforms>

 <ds:Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">

 <ds:XPath xmlns:cipher="http://intranet.corp.com/#encryptedData">

 self::text()[parent::cipher:CipherValue[@Id="cipher3982"]]

 </ds:XPath>

 </ds:Transform>

 <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#base64"/>

 </Transforms>

 </CipherReference>

 </CipherData>

</EncryptedData>

Example 5-8: Retrieving ciphertext from an access control restricted HTTP realm
78

5.5 XML Access Control
5.5 XML Access Control

5.5.1 Introduction
The term “XML Access Control” is used in two different ways:

❏ Expressing access control policies using an XML-based language, namely
“XML Access Control Markup Language” (XACML) [GoMo02] and

❏ Using these XACML–based policies to enforce fine-grained access con-
trol for XML–based resources.

“Fine-grained access control” refers to the concept that an access control pol-
icy does not only define access to an XML document as a whole (full access to
the complete document or nothing), but that access to individual nodes in the
document can be defined. In various works on XML access control [BBC+,
BCFM00, BCFM99, DVPS01, DVPS02], the authors propose systems in which
the access control processor (both access control enforcement function and
access control decision function) has multiple policies which are applied to a
given request:

❏ Access control policies which restrict access for a class of XML docu-
ments. Such a class is a group of XML documents which all conform to
the same DTD or XML Schema. For instance, such a class could be all
invoice documents.

❏ Access control policies which restrict access to individual XML docu-
ments.

The general process of fine-grained access control on a given document is
illustrated in figure 5-6 on page 80 and works as follows:

1. The initiator requests access to a given XML document target.

2. The requested document is parsed into a tree.

3. The access control processor retrieves all relevant access control poli-
cies:

❍ policies which apply to the overall DTD/Schema of the requested
document and

❍ policies which have been defined specifically for the requested
document).

4. According to the applying policies, the XML tree is labeled. The final
result of the labeling process is a flag for each node, namely whether
the node is to be included in the result (‘permit’ +) or excluded (‘deny’
–).

5. In the final transformation step, the document is pruned, i.e. all nodes
which are labeled ‘deny’ are removed from the document.
79

5 Confidentiality Systems – State of the Art
6. The pruned document is serialized and returned to the initiator.

to prune: Pruning is the process in which nodes are removed from a tree.

The removal of nodes during the pruning process can have the consequence
that the resulting XML document is no longer valid according to a given DTD
or Schema. For that reason, the DTD/Schema is also processed in a loosening
step. A simple approach for such a loosening is given in [DVPS00]: all nodes
(e.g. attributes) which are defined as required in the original DTD/Schema are
indicated to be optional in the loosened DTD/Schema.

5.5.2 The invisible ancestors problem
One question must be discussed in more detail: “What happens if an ances-
tor node (namely an element) is labeled ‘deny (–)’ but a descendant is
labeled ‘permit (+)’?”.
In this case, an ancestor is confidential which a descendant of the ancestor is
not confidential. This is meant by the phrases ‘invisible ancestor’ and ‘deep
visible descendant’.
Different solutions exist how to deal with such a situation:

Figure 5-6: XML Access Control pruning process

XACML

XML
document

XACML

DTD
or

Schema

loose
DTD
or

Schema

pruned
XML

document

parsing parsing

transformation
(pruning)

XML tree labeled XML tree pruned XML tree

loosening

+ +

+

– + +

+

tree labeling
80

5.5 XML Access Control
5.5.2.1 THE SCHEMA-FRIENDLY SOLUTION

The authors of [DVPS00] suggest the following rule:

“Note that, in order to preserve the structure of the document,
the portion of the document visible to the requester will also in-
clude start and end tags of elements with a negative or unde-
fined label, if the elements have a descendant with a positive
label.” [DVPS00]

The advantage of this solution is that the damage to Schema-validity is limited:
The element structure remains the same as in the original document, but all
attributes in the element are removed. The disadvantage is that the existence
of the ancestor elements remains visible for the initiator, even if the initiator is
not allowed to see the element. It can be envisioned that in particular cases,
even the existence of the ancestor element should be kept secret.
Given the following XML snippet: The element is labeled ‘deny (–)’, while
all other elements are permitted to be seen by the initiator:

During pruning the tree, all attributes of the element are removed, but the
element itself remains in the document subset, although access to it is denied.
The serialized result looks like in example 5-10.

A complete subtree can also be omitted. A complete subtree has the property
that all nodes in the subtree are labeled ‘deny’. Example 5-11 illustrates this
situation. The elements <A>, <E> and <F> are labeled ‘permit’, access to all
others is denied. To emphasize the pruning result, each element in the origi-
nal document has an attr="foo" attribute.

 <B someAttrInB="bar">

 <C someAttrInC="baz">

 </C>

Example 5-9: Input document for XML Access Control

 <C someAttrInC="baz">

 </C>

Example 5-10: Result document (element persists)

A

C

someAttrInB="bar"

someAttrInA="foo"

someAttrInC="baz"

B

Original document

A

C

someAttrInA="foo"

someAttrInC="baz"

B

Pruned tree (1)
81

5 Confidentiality Systems – State of the Art

Example 5-12 shows the result of the pruning process:

The subtree rooted by is not a completely omitted subtree as the elements
<E> and <F> are labeled ‘permit’. Therefore, the start- and end-tags of , <C>
and <D> persist in the pruned document. The subtree rooted by <G> only con-
tains nodes labeled ‘deny’. Therefore, the pruned document does not contain
any start- or end-tag for the elements <G>, <H>, <I>, <J> or <K>.

Original document

 <B attr="foo">

 <C attr="foo">

 <D attr="foo">

 <E attr="foo"></E>

 <F attr="foo"></F>

 </D>

 </C>

 <G attr="foo">

 <H attr="foo">

 <I attr="foo">

 <J attr="foo"></J>

 <K attr="foo"></K>

 </I>

 </H>

 </G>

Example 5-11: Original document before subtree removal

Pruned document

 <C>

 <D>

 <E attr="foo"></E>

 <F attr="foo"></F>

 </D>

 </C>

Example 5-12: Original document after subtree removal

A

E F

B

C

D

G

H

J K

I

Original document

A

E F

B

C

D

E F

B

C

D

G

H

J K

I

A

Original document Pruned tree
82

5.5 XML Access Control
5.5.2.2 REAL INVISIBLE ANCESTORS

Another solution for this conflict is to prune out all ancestors like done in
Canonical XML. No start or end tags are emitted if the element is labeled
‘deny (–)’. This has an impact on Schema-validity, if required elements are
pruned. On the other hand, completely pruning confidential nodes is a clean
solution that is also consistent with the idea of serializing an XML Infoset and
Canonical XML.
The result from the previous sections sample would look like in example 5-13
on page 83.

After access to the element is denied and the node is removed, the
requester has no knowledge that the element did exist in the original docu-
ment. This model allows removing ancestors from the document while non-
confidential descendants remain accessible and visible to the requester.
The same method applies for if multiple elements are pruned away (see
example 5-14).

5.5.3 Information disclosure
Using the Schema-friendly approach, complete subtrees can be hidden from
an initiator (like shown in example 5-12 on page 82). Deeply nested nodes
which are labeled ‘permit’ enforce that the complete ancestral element struc-
ture remains visible.
The ‘real visible ancestors’-approach is able to completely prevent disclosure
of element structure information to the initiator. A maximum of the docu-
ment’s structure can be hidden.

 <C someAttrInC="baz">

 </C>

Example 5-13: Result document (element removed)

Original document
<A>

 <C><D><E></E></D></C>

 <F><G><H><I></I></H></G></F>

Pruned document
<A>

 <E></E>

 <G><I></I></G>

Example 5-14: Pruning multiple elements

A

C

someAttrInB="bar"

someAttrInA="foo"

someAttrInC="baz"

B

Original document

A

C

someAttrInA="foo"

someAttrInC="baz"

Pruned tree (2)

A

E

B

C

D

I

G

F

H

A

E I

G

Original document Pruned tree
83

5 Confidentiality Systems – State of the Art
5.6 Summary
Currently available systems for encrypting data usually encrypt a full entity
(like a file) or a complete bit stream on the wire. Due to the unknown struc-
ture of the plaintext, it is not possible to select only the confidential material
for encryption. Inserting the partly encrypted data into unencrypted data is
not possible as the decryptor does not know which portions have to be
decrypted.
The selective–field–confidentiality service states that only sensitive data fields
are to be encrypted. Both the encryptor as well as the decryptor must be able
to distinguish between encrypted and unencrypted data, in order to decrypt
the correct portion of the data fields.
W3C XML Encryption is one possible system implementing a selective–field–
confidentiality security mechanism with relatively coarse granularity, espe-
cially designed for XML data.
XML Access Control defines a way in which the access to confidential material
inside an XML document can be restricted by an access control processor.
By comparing W3C XML Encryption and XML Access Control, it is seen that
W3C XML Encryption is restricted to encrypt full subtrees, while XML Access
Control can remove sensitive material from arbitrary positions of the tree.
W3C XML Encryption does not allow to encrypt an ancestor while leaving a
descendant in plaintext. XML Access Control has this ability, but requires a
trustworthy access control processor with access to the full document which
enforces the policy by removing nodes before giving the results to the client.
W3C XML Encryption does not allow ‘invisible ancestors’ which certain XML
Access Control systems do.
W3C XML Encryption discloses the position of the plaintext. The ciphers
specified by the W3C XML Encryption recommendation allow derivation of
the plaintext size by the size of the ciphertext. The explicit use of
<ds:KeyInfo> elements by W3C XML Encryption also reveals which user is
intended to decrypt particular <xenc:EncryptedData> elements. XML Access
Control has the ability to hide most of this information.
The rest of this work is to achieve the advantages of both XML Encryption and
XML Access Control with cryptographic mechanisms.
84

6 Requirements for the New Confi-
dentiality System

The previous chapter introduced W3C XML Encryption and XML Access Con-
trol. This chapter describes the requirements for the new confidentiality sys-
tem, which will be called ‘XML Pool Encryption’ for the rest of this
document. The new system will be capable to encrypt arbitrary parts of an
XML document. Encrypting arbitrary parts of an XML document means that
selected parts of the original document structure are hidden by the confiden-
tiality mechanism.

Advantages and drawbacks of the existing mechanisms. Both, W3C XML
Encryption and XML Access Control, provide confidentiality for XML docu-
ments by using different security mechanisms:

❏ W3C XML Encryption is a cryptographic system that is constrained to
the encryption of subtree structures in an XML document.

❏ XML Access Control can remove arbitrary parts from an XML document,
but requires an access control processor for this task.

Goal of this work. The goal of this work is to develop a system which does
not require an access control processor and which can encrypt arbitrary
parts of an XML document, not only subtree structures. Goal is to provide
confidentiality for arbitrary nodes in an XML document and therefore hide the
document’s original structure.

Requirements. It should be possible to

❏ provide confidentiality for arbitrary nodes (not only subtrees),

❏ provide confidentiality for the original structure of the document by
removing the nodes from their original position,

❏ provide confidentiality for the amount of confidential nodes

Trust policy. The system introduces two classes of entities:

DACP: A DACP (‘document access control provider’) is an entity which
provides access to a document. The DACP entity uses the DACP service.
The DACP provides confidentiality for the plaintext document or parts
thereof. The DACP entity decides which nodes are confidential and en-
crypts these nodes.

user: A user is an entity that is given an public document.

The DACP can give key material to the user. Based on the composition of the
key material, the user can decrypt a selected subset of the encrypted nodes
and insert the decrypted nodes back into the document. The DACP can grant
different views to the document by giving different key material to different
85

6 Requirements for the New Confidentiality System
users. A user without key material cannot decrypt any encrypted node. Such a
user could be an attacker who gained unauthorized access to the public docu-
ment.
The DACP has complete access to all public nodes, decides which users are
allowed to see which portions of the document and is responsible for enforc-
ing his decision by encrypting the respective contents.
The users get access to specific parts of the document by being given their
key material. Each user is free to disclose the decrypted nodes or his key mate-
rial to third parties.

No constraints about the storage location of encrypted nodes. The system
should not impose particular constraints on the DACP how it organizes the
storage of the encrypted nodes, i.e. how many ‘pools of encrypted nodes’ it
creates (see page 88 for definition of this term) and which encrypted nodes
are stored in which pool.

Algorithm independence. The system should be algorithm independent, i.e.
no particular cryptographic algorithm is to be mandated. Nodes are
encrypted using symmetric block or stream ciphers. The key material for the
users has to be confidentiality protected and authentic.
86

7 XML Pool Encryption
This chapter describes the concepts and design principles of XML Pool
Encryption.

7.1 Basic mechanism
The idea behind pool encryption is to remove confidential nodes from the
document tree and to encrypt each confidential node individually. These
encrypted nodes are stored in a container. After decryption, each node can
‘find its way back’ to its appropriate position in the document, so that it can
be restored correctly.

7.2 Terms used in this chapter
This section defines various terms which are needed in the following chapter:

7.2.1 Document states
During the various stages of the XML Pool Encryption process, the same docu-
ment has different names to indicate its state:

plaintext document: A plaintext document is an XML document, before
the document or parts of it are encrypted. All nodes are present in the
plaintext document, i.e. all public nodes as well as all confidential nodes.

public document: A public document is a plaintext document after appli-
cation of the pool encryption procedure. The confidential nodes have
been removed from the plaintext document and are encrypted. The pool
of encrypted nodes (see page 88) can be either inside the public docu-
ment or in a separate entity.

decrypted document: A decrypted document is a public document after
(partial) decryption. The decrypted nodes have been restored into the
appropriate position.

7.2.2 Node types

public node: A public node is a node in a document that is not confiden-
tial. A public node is not modified by encryption or decryption process-
es. Note: If a plaintext document contains public nodes, the public
document also contains the same public nodes.

confidential node: A confidential node is a node in a plaintext document
that is confidential, i.e. certain users are not allowed to see it. The at-
tribute ‘confidential’ means that the node is selected for further confiden-
87

7 XML Pool Encryption
tiality protection. In further processing steps, the confidential node is
transformed into an encrypted node.

encrypted node: An encrypted node is a confidential node which (1) has
been removed from its associated plaintext document during the pruning
procedure and which (2) has been encrypted under the node key.
Several encrypted nodes can be combined in a pool of encrypted nodes.

pool of encrypted nodes: A pool of encrypted nodes contains one or
more encrypted nodes.

decrypted node: A decrypted node is an encrypted node which has been
decrypted using its associated node key. This decryption is carried out as
part of the node decryption procedure.

restored node: A restored node is a decrypted node which has been re-
stored inside the public document to create the decrypted document.
The re-integration into the document is part of the node restoration pro-
cedure.

node key: A node key is a unique symmetric key that is needed to encrypt
one single confidential node’s plaintext data and its associated label.
88

7.2 Terms used in this chapter
7.2.3 Components of the pool encryption procedure.

pool encryption procedure: The pool encryption procedure is the
overall process of XML Pool Encryption. This includes the labeling pro-
cedure, the pruning procedure and the node encryption procedure.
(see figure 7-1 on page 89 for an overview of all existing procedures)

node selection procedure: Before the pool encryption procedure can
be applied, the DACP (‘document access control provider’) has to decide
which of the plaintext document’s nodes are confidential nodes and
therefore must be encrypted during the subsequent steps.

labeling procedure: During the labeling procedure, each node in a
plaintext document is assigned a label.
The labeling procedure is formally described in the section “Labelling
procedure” on page 122.

pruning procedure: During the pruning procedure, the confidential
nodes are removed from the plaintext document.

node encryption procedure: During the node encryption procedure,
each confidential node and its respective label is symmetrically encrypt-
ed under its node key.

Figure 7-1: Overview to the procedures

The user(s) apply these procedures

node selection procedure

po
ol

en
cr

yp
ti

on
pr

oc
ed

ur
e

labeling procedure

pruning procedure

node encryption procedure

node decryption procedure

po
ol

de
cr

yp
ti

on
pr

oc
ed

ur
e

re-labeling procedure

node restoration procedure

The DACP applies these procedures

Plaintext
document

Public
document

Decrypted
document
89

7 XML Pool Encryption
7.2.4 Components of the pool decryption procedure

pool decryption procedure: The pool decryption procedure is the
counterpart to the pool encryption procedure: During the pool decryp-
tion procedure, both the pool decryption procedure and the node resto-
ration procedure are executed.

node decryption procedure: During the node decryption procedure,
each encrypted node is symmetrically decrypted using its associated
node key. The result is a set of decrypted nodes and their labels.

node restoration procedure: During the node restoration procedure,
the decrypted nodes are restored in the public document, which leads to
the decrypted document.

7.2.5 Terms about the labeling procedure

label: During the labeling procedure, a label is assigned to each node. Each
label consists of one left value and one right value.

left value: The left value is a label value that is assigned at first to a node.

right value: The right value is the second label value that is assigned to a
node.

label value: A label value is a numeric value. Two label values (the left val-
ue and the right value) are assigned to a node during the labeling proce-
dure. These both label values form the node’s label.

7.3 Concepts and design principles

7.3.1 Removing nodes from the tree

The first novel concept of XML Pool Encryption is that confiden-
tial material is removed from its original position in the docu-
ment. Therefore, it is not possible to deduce whether a specific
region of the document contains confidential material or not.

The steps to perform the pool encryption procedure are

1. label all nodes in the plaintext document (labeling procedure)

2. remove (prune) confidential nodes from their original position in the
plaintext document (pruning procedure),
90

7.3 Concepts and design principles
3. encrypt each confidential node (the confidential node’s plaintext data
and its label) separately (each confidential node under its individual so-
called ‘node key’) and

4. collect all encrypted nodes in the pool of encrypted nodes.

5. Each user is given the necessary key material as a set of node keys. For
each encrypted node which the user is permitted to decrypt, the key
set contains the respective node key (node decryption procedure).

6. The user decrypts the respective encrypted nodes and inserts the
decrypted nodes back into the appropriate position in the document
(node restoration procedure).

Given the plaintext document in figure 7-2, the confidential nodes are marked
black (E, F, J, M, N, O, P, U and V). The white nodes are public nodes.

The first step performed by the DACP is the labeling of all nodes in the plain-
text document. The labeling procedure itself will be described later. After
labeling all nodes, the confidential nodes are removed from their original posi-
tion in the plaintext document. Then each confidential node is encrypted
individually. All encrypted nodes are collected in a pool of encrypted nodes
(see figure 7-3 on page 92). Figure 7-3 does not specifically show the node
encryption procedure itself, but only the result of the pruning procedure.
During the pruning procedure, ‘orphaned nodes’ which have lost their parent
node become direct children of their former ‘grandparent’ (or the next unen-
crypted ancestor if the grandparent is also encrypted).

orphaned node: An orphaned node is a public node which has a confi-
dential node as parent node.
Note: It is called ‘orphan’ because it looses its parent node during the
pruning procedure.

In figure 7-2, the node J is a confidential node, while the node K is a public
node. During the pruning procedure, node J is removed from the document,

Figure 7-2: Plaintext document with confidential nodes

JBB SS

KKII RR

NLL QQ

OM P

TT

U

WW

CC

F

HH

V

XX

DD

GGE YY

AA

AA Public node

V Confidential node
91

7 XML Pool Encryption
i.e. node K becomes an orphaned node. After the pruning procedure, node A

(another public node) becomes the new parent of node K (see figure 7-3).
Using a human analogy: As long as the parents cannot care for their chil-
dren by themselves, the grandparents (or the next living ancestor) are in
charge to look for the children and give them a home, until the real parents
are back to serve their role as a direct ancestor.
The pool of encrypted nodes (see figure 7-3) is then placed in the public doc-
ument.

Depending on which node keys are available to the user, a specific set of
encrypted nodes can be decrypted. In the given example, the user is able to
decrypt the nodes N, O, P, U and V. The node keys for the nodes E, F, J and M are
not available to the user, so these nodes cannot be decrypted. After decrypt-
ing a node, both the node’s plaintext data and its original position information
become available to the user (node decryption procedure). These decrypted
nodes are restored back into the document, to the appropriate position (node
restoration procedure).
In the given example, the decrypted document differs from both the plaintext
document (which contained all nodes) and the public document (in which all
confidential nodes were encrypted). Only a user who possesses all node keys
(so that he can decrypt all encrypted nodes) can reconstruct a decrypted doc-
ument, so that the result equals to the plaintext document. The user in the
example does not possess all node keys, therefore the document is only par-
tially decrypted (see figure 7-4).

Figure 7-3: Public document (with pool of encrypted nodes)

Figure 7-4: Decrypted document (after partial decryption)

AA Public node

V Confidential node

V Encrypted node

BB SS

KKII RR

LL QQ

TT

WW

CC

HH XX

DD

GG YY

AA

J N

O

M

P U

F

V

E

PoolPool

AA Public node

V Confidential node

V Encrypted node

BB SS

KKII RR

NLL QQ

O P

TT

U

WW

CC

HH

V

XX

DD

GG YY

AA

J MFE

PoolPool
92

7.3 Concepts and design principles
The overall pool encryption procedure (see figure 7-5) works as follows:

The XML plaintext document is represented by the input tree 1. The encrypt-
ing party selects the confidential nodes (marked black) and labels all nodes in
the document 2. If multiple users are granted different views to the docu-
ment by allowing them to decrypt different nodes, the selected nodes from
step 2 represent the union set of all individual sets. All confidential nodes are
extracted from the tree prior encryption, so that the pruned tree 3 and the
extracted confidential nodes 4 are separated. The extracted confidential
nodes contain both the node’s plaintext data and the original position of the
node in the tree (the label). Each extracted confidential node is encrypted
with an individually generated node key 5, resulting in the encrypted

Figure 7-5: Pool encryption – general overview

1

2

3

5

4

6

7

8

selection and labeling

prune
93

7 XML Pool Encryption
nodes 6. The node encryption procedure is symbolized by putting the confi-
dential node (symbolized as black circle) into the envelope and sealing the
envelope using the node key (encryption). These envelopes are bundled in a
pool of encrypted nodes 7. In the example, the pool is added to the public
document 7. Figure 7-5 does not illustrate the key management aspects, i.e.
how the node keys are transported to the users.

7.3.2 Pool Key Management
The second concept in XML Pool Encryption is that it can be controlled at a
fine granular basis what parts of a document a specific user is permitted to
decrypt. The key management for XML Pool encryption is described specifi-
cally in section 7.6 on page 113.

7.3.3 Dummy nodes
The third novel concept for XML Pool Encryption is the introduction of
‘dummy nodes’. During the pool encryption procedure, the encrypted nodes
are moved altogether into the pool of encrypted nodes. By observing the total
number of encrypted nodes in that pool, an attacker may make an estimation
on the total number of encrypted material in a given document. By adding
dummy nodes to the pool, this attack can be prevented. The concept of
dummy nodes is described in section 7.8 on page 118.

7.4 Representing the position of a node in the
tree

The biggest problem is to find a sufficient representation for the original posi-
tion of each node. To make restoring the tree possible, the user needs the
original position information of a decrypted node. This is not a trivial task as
the user may have only access to a reduced subset of the original tree.

7.4.1 Simple approaches
The absolute position of a node could be described by its ancestor nodes (i.e.
the depth in the tree) and the position relative to its siblings. Restoring a node
becomes impossible, if the position information is expressed in terms of
ancestors and the user does not see the direct ancestors (e.g. because they
cannot be decrypted).
One (insufficient) way to represent the position information using an XPath
based expression could be

/A/K[1]/N[1]/P[1]

to describe the position of the P node. The problem with this representation
is that the model allows that also ancestor nodes are encrypted, i.e. that some
nodes in the XPath are not available in the document. For instance, if the N
node is encrypted, the above XPath cannot be evaluated.
94

7.4 Representing the position of a node in the tree
A powerful and extensible scheme for representing the position of a node will
be outlined in the following section.

7.4.2 “Adjacency List Mode” (ALM)

7.4.2.1 OVERVIEW

In the article “Trees in SQL” [Cel00], JOE CELKO describes a scheme how tree
structures can be stored in flat tables like SQL databases, i.e. how a tree can
be converted into a flat table and restored back from the table information.
This scheme is called Adjacency List Mode (ALM). Given the tree in figure 7-6.
The tree contains six nodes (named Albert, Bert, Chuck, Donna, Fred and

Eddie). The algorithm for defining the position of each node has to traverse
the full tree and assign labels to all nodes, using an inorder traversal. For each
node, the label consists of two integer values, the left value and the right
value. The dotted line enveloping the tree is the sequence in which nodes are
visited and label values are assigned.
Each time a node is visited for the first time, a counter is incremented by
and the value of is assigned to the node’s left value. Each time a node is vis-
ited the second time, the variable is incremented by and the value of is
assigned to the node’s right value.
Starting with an initial value of , Albert is the first visited node in the
traversal. Albert is visited for the first time, so is incremented by and the
new value is assigned to the Albert’s left value: . Bert is visited
for the first time, is incremented by and the new value is assigned to the
Bert’s left value: . Bert has no further descendants, so the algo-
rithm visits Bert for the second time, is incremented by and the new
value is assigned to Bert’s right value: . This method is applied
until the full tree has been traversed. After the traversal, each node in the tree
has a left value and a right value, i.e. a full label. The dashed grey line outlines
the order in which the values are assigned to the label values of the respective
nodes, i.e. the path of the traversal walk.

Figure 7-6: Sample tree for the “Adjacency List Mode”

2 3 4 11

7 85 6 9 10

1 12

Bert Chuck

FredDonna Eddie

Albert

X 1
X

X 1 X

X 0=
X 1
Albertleft 1=

X 1
Bertleft 2=

X 1
Bertright 3=
95

7 XML Pool Encryption
The tabular representation of the tree from figure 7-6 is explicitly written out
in table 7-1.

Given table 7-1, it is simple to determine the position of two given nodes rela-
tive to each other. The range that is spanned by the left value and the right
value determine the position in the tree. Figure 7-7 shows the ranges for all
nodes.

It can be seen that the range of Albert (1/12) overlaps the ranges of all other
nodes, so Albert is an ancestor of all other nodes, i.e. Albert is the root node
of the tree. The ranges of Bert (2/3) and Donna (5/6) have no common inter-
val, so there is no ancestor/descendant relationship between them. Bert is a
preceding node of Donna and Donna is a following of Bert. So the label values
can be used to determine whether a given node is on the [self axis],
[ancestor axis], [descendant axis], [preceeding axis] or [following
axis] of a defined context node. This is exactly the same partitioning of the
document like described earlier (in figure 3-9 on page 42).

Given a context node and a node , it has to be defined on which of these
five axes the node is located (relative to). After labeling the tree accord-

Node left value right value label

Albert 1 12 (1/12)

Bert 2 3 (2/3)

Chuck 4 11 (4/11)

Donna 5 6 (5/6)

Fred 7 8 (7/8)

Eddie 9 10 (9/10)

Table 7-1: Sample table for the “Adjacency List Mode” (see figure 7-6)

Figure 7-7: Sample ranges for the “Adjacency List Mode”

Albert

Bert

Donna Fred Eddie

Chuck

1 2 3 4 5 6 7 8 9 10 11 12

C X
X C
96

7.4 Representing the position of a node in the tree
ing to the above algorithm, this classification can be done as follows: Table 7-2
introduces four parameters; table 7-3 describes the classification.

With table 7-3, it is possible to determine the relationship between two nodes
 and , if the label values , , and are known. This is necessary

when the tree is reconstructed from a list of nodes and their respective labels.

The Adjacency List Mode (ALM) converts a complete tree into a table struc-
ture and vice versa. ‘Complete’ tree means that all nodes from the tree are
stored in the database structure. This property allows an easy labeling
scheme: To assign the left values and the right values to the nodes, the
counter is simply incremented by 1 in each step.

The ALM is not able to label a partial tree. For XML Pool Encryption, the plain-
text document’s tree is not fully converted into a table. Only the confidential
nodes must be converted into a table structure. The public nodes remain in
the public document. Section 7.5 on page 102 introduces the “Modified ALM”
which overcomes this limitation.

When applying the ALM algorithm to a tree, always a full labeling traversal is
performed. All label values can be calculated during that traversal. There is no
need to attach the label values to the nodes in the tree using a metadata mech-

Symbol Type

The left value of the context node

The right value of the context node

The left value of the node which is to be classified

The right value of the node which is to be classified

Table 7-2: Used symbols

Axis condition 1 condition 2

 is on the [self axis] of

 is on the [ancestor axis] of

 is on the [descendant axis] of

 is on the [preceding axis] of

 is on the [following axis] of

Note: The traversal algorithm guarantees that the left value of a
label is smaller than its right value.

Table 7-3: Classification by document order

CL
CR
XL
XR

X C CL XL= CR XR=

X C XL CL< CR XR<

X C CL XL< XR CR<

X C XR CL<

X C CR XL<

X C CL CR XL XR
97

7 XML Pool Encryption
anism, because the tree is converted to the table on-the-fly. The tree is not
altered by attaching the label values directly to the tree.

7.4.2.2 ANALOGY BETWEEN THE ALM AND THE EVENT STREAM OF AN XML PARSER

The previous section described how the ALM algorithm labels a tree struc-
ture. An easy mapping analogy can be found between ALM label values and
the serialized octets of an XML document. The intervals shown in table 7-1 on
page 96 can also be found in the serialized XML instance in figure 7-8. It

shows how the numeric label values directly correspond to the XML markup:
the relative position of the start tag of an element corresponds to the left
value of the node, the relative position of the end tag of an element corre-
sponds to the right value of that node.
So instead of generating the ALM’s label values with a traversal on a tree struc-
ture, the values could also be generated by a series of streaming events, e.g.
using an XML parser with the SAX API [Bro02].

7.4.2.3 STORING ALM LABELS

For the encryption of confidential nodes of an XML document, the ALM label-
ing scheme has some important drawbacks: The pruning procedure removes
the confidential nodes from the document, while the public nodes remain in
the document.

Figure 7-8: Mapping between ALM values and XML Markup

Albert

Bert

Donna Fred Eddie

Chuck

1 2 3 4 5 6 7 8 9 10 11 12

<Albert><Bert></Bert><Chuck><Donna></Donna><Fred></Fred><Eddie></Eddie></Chuck></Albert>
98

7.4 Representing the position of a node in the tree

99

ample could look like in figure 7-9.

ing ALM)

TT

U

WW

V

XX YY

4949

3434 3737

3131 3838

2828 4141

4848

3939 4040

4242 4343

4747

4444 4545 4646
Using the scheme to increase the counter by 1 and labeling the document, an ex

Figure 7-9: Labeled plaintext document (us

JBB SS

KKII RR

NLL QQ

OM P

CC

F

HH

DD

GGE

AA

1717 1818

1616 1919

2323 2424

2222 2525

3535 3636

3232 3333

2929 3030

2626 2727

5050

22

11

1414 1515

1313 2020

1212 2121

33

77 88

1010 1111

44

66 9955

7 XM
L Pool Encryption

100 and the numbering scheme looks like in figure

er pruning procedure

TT

WW XX YY

3737

4141

4848

4242 4343 4444 4545 4646
After the pruning procedure, all confidential nodes are removed document tree
7-10.

Figure 7-10: Public document with ALM label values aft

BB SS

KKII RR

LL QQ

CC

HH

DD

GG

AA

1717

1616 1919

2323

3636

3232 3333

3030

4949

5050

3434

3131

22

11

1414 1515

2020

1212

33

77

1010 1111

44

99

7.4 Representing the position of a node in the tree
To restore decrypted nodes in the public document, the user needs to know
the label values of the public nodes. The labeling cannot be simply recon-
structed by applying the labeling procedure, because the resulting labeling is
not a sequence which can be reconstructed by the user. With the ALM, the
labels of the public nodes would have to be transferred into the public docu-
ment using some metadata mechanism. For an XML document, this metadata
mechanism could be to add specific attributes for the left value and the right
value to the document’s elements (see example 7-1).

Note: The example tree in figure 7-10 consists only of elements. The XML
source code adds whitespace for indentation to show the depth of a node in
the tree. For simplicity, these whitespace text nodes do not show up in the
figure, so strictly speaking, both figures do not match. The term ‘indenta-
tion’ refers to the addition of whitespace characters to source code like XML
to make it more readable for a human reader.
In the public document shown above, the left values and the right values are
added to the document by using attributes in a particular namespace to store
and transport these values, so that the decrypting user has access to them.
The most obvious drawback of this approach is the ‘pollution’ of the docu-
ment’s infoset with a large amount of attribute and namespace nodes; the size
of the public document is increased significantly.
The second disadvantage is more subtle and relevant for the security of the
system: The added attributes and the knowledge about the simple ‘increase-
by-one’ scheme enable an attacker to make good assumptions about the plain-
text document’s structure. It can be spotted in which locations a confidential
node has been removed (during the pruning procedure) or where no confi-

<A xmlns:pe="http://xmlsecurity.org/#poolenc"

 pe:L="1" pe:R="50" >

 <B pe:L="2" pe:R="17" >

 <C pe:L="3" pe:R="14" >

 <D pe:L="4" pe:R="7" />

 <G pe:L="9" pe:R="10" />

 <H pe:L="11" pe:R="12" />

 </C>

 <I pe:L="15" pe:R="16" />

 <K pe:L="19" pe:R="32" >

 <L pe:L="20" pe:R="23" />

 <Q pe:L="30" pe:R="31" />

 </K>

 <R pe:L="33" pe:R="34" />

 <S pe:L="36" pe:R="49" >

 <T pe:L="37" pe:R="48" >

 <W pe:L="41" pe:R="42" />

 <X pe:L="43" pe:R="44" />

 <Y pe:L="45" pe:R="46" />

 </T>

 </S>

Example 7-1: Serialized public document with label values in attributes
101

7 XML Pool Encryption
dential nodes have been as there is no space to do restore one. For instance,
the Y element cannot have child nodes after decryption, because the differ-
ence between Y’s right value and its left value is 1.
The last (and most obstructive) disadvantage is that only elements can be
labeled by adding attributes, as only elements allow the addition of metadata
using attributes. By their very nature, comments, processing instructions and
character information items cannot be labeled in that way.
Therefore, the pure Adjacency List Mode is not sufficient for XML Pool
Encryption.

7.5 “Modified Adjacency List Mode” (MALM)
This section presents a more advantageous way to label the tree. The novel
idea is to increment the counter in larger steps using a modified label assign-
ment algorithm, from now on called the “Modified Adjacency List Mode”
(MALM):
In order to prevent the pollution of the public document with metadata, the
labels cannot be attached to the public nodes. Therefore, the labels have to be
attached in some way to the encrypted nodes.
The Modified ALM works similar to the original ALM. The sequence in which
the nodes are visited is the same for both ALM and MALM, following the outer
envelope of the tree.
In both ALM and MALM, the numerical sequence of label values (left values
and right values) assigned to the nodes is a strictly monotonic increasing num-
ber sequence. That means while following the traversal at the outer envelope
of a labeled tree, each value is greater than the previous visited one.
In the ALM, the difference between each label value and the previous label
value is 1, because the counter for assigning label values is incremented by 1
in each step.
In the MALM, the counter is increased in steps greater than 1. The MALM
algorithm utilizes a parameter, called the stepsize . defines in which steps
the counter is incremented for public nodes.
The label values of public nodes are always a multiple of , i.e.

. Between two subsequent public label values is a gap of size
. This gap is used to hide label values which are assigned to confidential

nodes.

X
S S

X
V S

V n S n ℵ∈,⋅=
S 1–
102

7.5 “Modified Adjacency List Mode” (MALM)
7.5.1 A MALM example
Figure 7-11 illustrates, how the gap is used to hide label values.

Note: In practice, the stepsize will be a large integer value (Section 7.5.4
on page 109 describes how to choose). To hide the tree’s original struc-
ture, the stepsize must be a cryptographically large value, e.g. 160 bit, i.e.

. In this example, the stepsize is exemplarily set to . The
value 1000 has the advantage that the example is easier understandable,
i.e. when assigning decimal values, it is obvious whether a particular value
in the figures is a multiple of 1000 (assigned to a public node) or not.

Before the traversal, the counter is set to . The first node visited during
the traversal is the public node A. The counter is increased by , so that

. This value is assigned to the left value of A.
The next visited node is the confidential node B. The node B is pushed into a
queue. This queue holds all confidential nodes which have been encoun-
tered since the last label value has been assigned to a public node. This
queue is flushed each time the traversal encounters a public node.
The next visited node is the public node C. The counter is increased by , so
that . The queue now contains a confidential node. The algorithm
must find a label value for that node with the property .
This is done by creating a random value with the property . In the
given example, the random value is chosen to be . Now is added to
the lower bound for in order to lead to

. The value is assigned to the
left value of the confidential node B. The node B is removed from the queue.
After that, the queue is empty so that the tree traversal can continue.
The public node C has no child nodes, so that the traversal algorithm visits the
public node C for a second time. The counter is increased by , so that

.
The purpose of the queue is to store confidential nodes which have not yet
been assigned a left or right label value during the traversal. Each time a pub-

Figure 7-11: Hiding values in the gap

D

E

B

AA

CC

FF 3921392134323432 376437643445344530123012

11231123

60006000

10001000

30003000

30003000

20002000

20002000

50005000

5000500040004000

40004000

S
S

S 2160= S 1000=

X 0=
S

X 1000=

S
X 2000=

v 1000 v 2000< <
r 0 r S< <

r 123= r
v

v 1000 r+ 1000 123+ 1123= = = v 1123=

S
X 3000=
103

7 XML Pool Encryption
lic node is visited, the queue is flushed by assigning values to the pending
nodes.
The next five label values belong to confidential nodes, so that they are
pushed into the queue. The sequence in which that happens is (1) B’s right
value, (2) D’s left value, (3) E’s left value, (4) E’s right value and (5) D’s right
value. Note that the node B appears only once in the queue while the nodes D
and E appear twice (they require both the left value and the right value). So
the queue contains three different nodes (B, D and E), but for the time being,
we denote that as “five nodes are in the queue”, because D and E appear
twice.
The next visited node is the public node F. The counter is increased by , so

that . The queue contains the five confidential nodes mentioned

earlier. The algorithm must assign five interstitial label values for these

nodes with the properties and . This is done by cre-

ating five random values with and and sorting these val-

ues in increasing order. In the given example, the random values are chosen
to be , , , and . The are

added to the lower bound for , which leads to .

The interstitial label values are then assigned to the nodes in the queue: (1)

B’s right value is 3012, (2) D’s left value is 3432, (3) E’s left value is 3445, (4)
E’s right value is 3764 and (5) D’s right value is assigned 3921. After that, the
queue is empty so that the tree traversal can continue.
The result of the completed labeling procedure is shown in figure 7-12 .

As describer earlier, the left and right label values which are assigned to pub-
lic nodes are always a multiple of the stepsize . Throughout this document,
these label values will be called ‘even label values’. The label values assigned

Figure 7-12: Plaintext document after labeling procedure (Modified ALM)

S
X 4000=

vi
3000 vi 4000< < vi 1– vi<

ri 0 ri S< < ri rj≠
i j≠

r1 12= r2 432= r3 445= r4 764= r5 921= ri
vi vi 3000 ri+=

vi

D 3921392134323432

E 3764376434453445

B 3012301211231123

AA 6000600010001000

CC 3000300020002000

FF 5000500040004000

S

104

7.5 “Modified Adjacency List Mode” (MALM)
to the public nodes A, C and F in the examples are (1000, 2000, 3000, 4000,
5000 and 6000).
The confidential nodes are assigned randomized label values, which lie
between the even label values. These will be called ‘interstitial label values’.
In the example, these interstitial label values are 1123, 3012, 3432, 3445,
3764 and 3921. The terms ‘even’ and ‘interstitial’ are defined below.
After labeling the plaintext document, the pruning procedure removes confi-
dential nodes from the labeled plaintext document. The pruned document is
called ‘public document’ (see figure 7-13).

7.5.2 Definitions

interstitial: The term ‘interstitial’ defines that the attributed item belongs
to a confidential node, an encrypted node, a decrypted node or a restored
node.

Note: The four terms (‘confidential’, ‘encrypted’, ‘decrypted’ and ‘restored’)
all refer to the same node, while it is in different stages of the pool encryp-
tion procedure and the pool decryption procedure.
The word ‘interstitial’ (German „Zwischengitterplatz“) is derived from crystal-
lography: In crystallography, an interstitial is a space in the crystal’s lattice
where foreign atoms can be inserted, e.g. by doping a semiconductor.
The label of a confidential node is called ‘interstitial label’. The interstitial
label consists of two ‘interstitial label values’, the ‘interstitial left value’ and
the ‘interstitial right value’.

even: The term ‘even’ defines that the attributed item belongs to a public
node.
(The term even is not meant as the opposite to odd, but refers to the reg-
ular structure of the sequence of even values, as opposite to an interstitial
value.)

The label of a public node is called ‘even label’. An even label consists of two
‘even label values’, the ‘even left value’ and the ‘even right value’.

Figure 7-13: Public document after pruning procedure (Modified ALM)

AA 6000600010001000

CC 3000300020002000 FF 5000500040004000
105

7 XML Pool Encryption
The properties even and interstitial are orthogonal to left and right, i.e. each
combination is possible.

interstitial sequence: A continuous sequence of interstitial label values
between two subsequent even label values.

The dotted line in figure 7-14 is the path of the tree traversals. The black parts
of the dotted line show the two ‘interstitial sequences’.

The first interstitial sequence contains one interstitial label value (1123) that is
located in the range between the even label values 1000 and 2000. The sec-
ond interstitial sequence is located in the range between the even label values
3000 and 4000 and comprises the interstitial label values (3012, 3432, 3445,

Figure 7-14: Two interstitial sequences in the tree

D 3921392134323432

E 3764376434453445

B 3012301211231123

AA 6000600010001000

CC 3000300020002000

FF 5000500040004000
106

7.5 “Modified Adjacency List Mode” (MALM)
3764 and 3921). Figure 7-15 illustrates the concepts of public nodes, confi-
dential nodes and the interstitial sequence.

Each interstitial label value is in a range that is delimited by two even label val-
ues. All interstitial label values of an interstitial sequence are in the same range
between the same even label values. In the example in figure 7-15, it can be
seen that all five interstitial label values are in the interval between 3000 and
4000. That interval is delimited by the even label values which are assigned to
the public nodes C and F.

7.5.3 Interval generators
Like described earlier, each time an even label value is assigned, the queue for
the interstitial label values is flushed and the interstitial label values are gener-
ated and assigned. The interstitial label values were calculated by gener-

ating random values with and , sorting these values

in increasing order so that and then generating the label values

.

An interval generator generates these random values . An interval genera-
tor receives two inputs which is (1) the stepsize and (2) the number of
random values to be generated.

interval generator: An interval generator generates a numerical se-
quence in random values. All values are pairwise different from

each other and have the property that with

. The interval generator returns the sequence of random values

Figure 7-15: Interstitial sequence

3012 3432

interstitial sequence

confidential nodesplaintext node

even
label
value

even
label
value

interstitial
label
value

interstitial
label
value

interstitial
label
value

interstitial
label
value

interstitial
label
value

3445 3764 39213000 4000

B D DE ECC FF

plaintext node

m vi
m ri 0 ri S< < ri rj≠

i j≠

vi 1– vi<

vi S ri+=
m ri

S m

m ri
ri rj≠

i j≠
0 ri S< <

0 i m≤<
107

7 XML Pool Encryption
 sorted in increasing order.

To create values with the above mentioned properties (pairwise different

and all in the same interval), also is a constraint. For example, with a

stepsize of , only positive integer values exist with .

For XML Pool Encryption, the random number generator used to create the
values must be a cryptographically secure PRNG. The stepsize is chosen
to be , so that for each random value to be created, the PRNG has to
create random bits.
The IntervalGenerator algorithm is described in figure 7-16. The algorithm
creates different random values with a length -bit and returns them
sorted.

Figure 7-16: IntervalGenerator algorithm

ri

m
m S<

S 10= 9 ri 0 ri 10< <

ri S
S 2n= ri
n

m n

n

n

y

y

set contains
m values

the set already
contains x

create an empty set

generate random value x with n bit

add x to the set

return the sorted values
from the set

Start

End

IntervalGenerator.createInterstitialSequence():Vector
108

7.5 “Modified Adjacency List Mode” (MALM)
7.5.4 Stepsize S
The labels of the public document can be easily regenerated given the public
document and the stepsize . The stepsize must be chosen in a way that

1. encryption and decryption are possible and

2. that it cannot be derived whether or where confidential nodes did
exist between the public nodes.

The value of the stepsize defines how many nodes ‘have space’ between
two public nodes. With a stepsize of , the first even label value would
be 1 and the second even label value would be 2. In order to find a interstitial
label value which fits between these both, it would be necessary to find an
integer with the property , which is not possible.

7.5.4.1 ENABLING THE TREE LABELING PROCESS

With a lower bound for the stepsize of , it would allow at least one sin-
gle interstitial label value to fit into the interval. Generally speaking, to allow

 encrypted nodes to be descendants of a public node, the stepsize must be
chosen .
An interval generator must generate different random values. These values

 must be in the given interval and distinct from each other.
Each interval generator which fulfills this minimum requirement guarantees
that the node restoration procedure will have success. The term ‘success’ only
refers to the minimum requirement that reconstruction of the tree is possible,
but not necessarily that the overall system is secure. To be secure, the depen-
dencies between the nodes must be hidden.

7.5.4.2 HIDING DEPENDENCIES BETWEEN NODES

Besides the basic functionality of just being able to restore the document, the
system should prevent information leakage to the user as good as possible.
After decryption of the document, the user has access to the labels of all pub-
lic nodes and decrypted nodes.
If the distance between two label values is too small, the user knows how
many other label values could be between the two label values.

Figure 7-17: No space for interstitial nodes

S S

S
S 1=

x 1 x 2< <

S 2=

n
S 2n>

m
vi 0 vi S< <

AA 4000400010001000

BB 1002100210011001 CC 1999199910031003 DD 3000300020002000
109

7 XML Pool Encryption
Figure 7-17 shows a decrypted document, which contains two public nodes
(A and D) and two decrypted nodes (B and C), along with their label values.
The user knows the following about the given tree structure:

❏ A is the parent node of B. B is the first child node of A.
There is no space to add an interstitial label value between the left value
of A (1000) and the left value of B (1001).

❏ B cannot have any descendants, i.e. B is a leaf node.
The difference between the left value of B (1001) and the right value of
B (1002) does not allow insertion of any other child nodes to B.

❏ The direct following sibling of B is C. There are no siblings can between
B and C.
The difference between the right value of B (1002) and the left value of
C (1003), does not allow insertion of any other sibling node.

❏ A is the parent node of C.
All label values have been consumed by B, so there is no space to add an
interstitial node.

❏ The next sibling of C is D.

❏ It is possible that A has ancestors.

❏ It is possible that interstitial nodes are between A and D, for instance as a
child of A and parent of D.

❏ It is possible that the nodes C and D have descendants.

The interval generator must create a labeling sequence which makes it hard
for users of the system to gain knowledge about the full structure of the origi-
nal plaintext document.
110

7.5 “Modified Adjacency List Mode” (MALM)
Taken the example from figure 7-17 on page 109, the grey nodes in figure 7-18
illustrate the potential node locations. Each grey node can be a single node or
a subtree.

With a secure labeling scheme which does not leak information to the
attacker, the potential node locations would be anywhere in the tree, as seen
in figure 7-19.

Figure 7-18: Insecurely labeled document with possible node positions

Figure 7-19: Securely labeled document with possible node positions

AA 4000400010001000

BB 1002100210011001 CC 1999199910031003 DD 3000300020002000

AA 4000400010001000

BB 1435143512341234 CC 1873187316891689 DD 3000300020002000
111

7 XML Pool Encryption
A user who possesses a decrypted document (which is labeled with even and
interstitial label values) should not be able to use the given labeling to obtain
further information about undecrypted nodes.
To achieve this unpredictability, the interstitial label values must be randomly
spread across the available range of values. Additionally, the range of values
must be large. Random spreading is achieved by using a cryptographically
secure PRNG for generating the interstitial sequence, i.e. inside the interval
generator. As discussed earlier, the range of values, i.e. the stepsize, is chosen
to be a cryptographically large number.

7.5.4.3 LENGTH OF ENCODED LABELS

The labels of the confidential nodes are encrypted together with the confiden-
tial nodes’ XML information set data. In order to prevent adversaries to guess
information from the length of the ciphertext of an encrypted node, all labels
are encoded with a fixed length.
For pool encryption, a stepsize is chosen to be a power of , so that

.
So a length of bit is reserved for assigning interstitial label values in a given
range. must be sufficiently large enough to cover all possible interstitial
sequences in a document.
An interstitial label value is encoded with bits with . is the
number of bits reserved for labeling the public nodes. is the number of bits
reserved for labeling the confidential nodes between the public nodes.
The bit length must be chosen to allow the labeling of the public docu-
ment, i.e. it corresponds to the total number of nodes in a given document.
Typical XML documents have a size below 1 MB, so that a length of is
sufficient.
The bit length (i.e. the stepsize) must be chosen to allow both the creation
of an interstitial sequence and to prevent information disclosure to users. The
parameter should be chosen to be a cryptographically secure value, e.g.

. Choosing a smaller value like does not mean that a user
could decrypt more nodes than he is permitted; it means that the user may
derive parts of the original document structure information. Both values
and are transmitted to the users in the pool of encrypted nodes. Figure 7-20
illustrates the structure of an interstitial label value.

Figure 7-20: Interstitial value representation

S 2
S 2n=

n
n

k k m n+= m
n

m

m 32=

n

n
n 64> n 12=

m
n

m bitm bit n bitn bit

interstitial label value viinterstitial label value vi
112

7.6 Key Management
7.6 Key Management

7.6.1 Overview
This section describes the key management process for XML Pool Encryption.

❏ Given a set , containing the identities of different users, denoted

by . An example is .

❏ Given a set of decisions for read access operations on a node, namely

❏ Given an XML plaintext document’s node set , containing all docu-
ment information items (both public nodes and confidential nodes).

 is the result of evaluating the XPath expression “(//. | //@* | //
namespace::*)”.

❏ Given an access control decision function , which

returns the access right for the user on the given node ,

i.e. whether access is permitted or denied.

❏ The confidential node set contains all confidential nodes with

 for at least one user .

❏ The public node set contains all public nodes, i.e.

 for all public node . Access to nodes in is

permitted to all users.

❏ For each confidential node , a unique node key is created by a

key generator. Node keys are secret keys for encryption and decryption
of confidential node. Each confidential node is encrypted under its

node key to create the ciphertext :

❏ Each user has an own confidentiality user key . User keys can

either be public or secret keys. Key management for user keys is outside
scope of this document. It is assumed that authentic user keys are avail-
able to the DACP.

❏ The key collection contains all node keys for which the user

is granted access to.

U ui n
U u1 u2 … un, , ,{ }= U Alice Bob,{ }=

A
A permit deny,{ }=

D

D

mi j, M ui dj,()=

ui U∈ dj D∈

C cj D∈

M ui cj,() deny= ui

P D\C=
M ui pj,() permit= pj P∈ P

cj C∈ kj

cj
kj ej

ej Ekj cj()=

ui Ki

KCui kj ui
113

7 XML Pool Encryption
❏ The key collection is encrypted under the user’s key so that the

user is able to decrypt the encrypted nodes which he is given access

to.

7.6.2 Relationship between encrypted nodes and node keys
The ciphertext of each encrypted node is marked with a non-encrypted node
identifier, which identifies the node key required to decrypt the encrypted
node. The node keys are also attributed with their node identifiers.

node identifier: A node identifier is an identifier which unambiguously
maps a node key to the corresponding encrypted node and vice versa.

Figure 7-21 is an example for the binding between node keys and encrypted
nodes via the node identifiers: The figure contains a pool of encrypted nodes
and two node key collections for the users Alice and Bob.
Each node key collection is encrypted under the user’s key, so that only Alice
and Bob can see the respective node identifier and node keys.
After decrypting her node key collection, Alice possesses two node keys,
marked with the node identifiers "#fU5sH" and "#K7FFe". The two node iden-
tifiers provide Alice with the necessary knowledge required to select the cor-
rect two encrypted nodes from the pool of encrypted nodes for decryption.
The black surrounded parts like the node keys for Alice and Bob as well as the
encrypted nodes are confidentiality protected. The encrypted nodes are pro-
tected by a symmetric cryptographic algorithm, the confidentiality protection
mechanism for the node key collections is not illustrated here.
Using her node keys, Alice can decrypt the two encrypted nodes #fU5sH and
#K7FFe.
In the same way, Bob can decrypt ‘his’ six encrypted nodes. Both can decrypt
#fU5sH and #K7FFe the same way as Alice can do, but Bob can restore a larger
part of the document as he also can decrypt (and restore) the nodes #77nb4,
#REST6, #x1m3L and #93HzG.
The encrypted node with the node identifier #8ZtW2 can be decrypted by nei-
ther Alice nor by Bob.

KCui Ki
ui
114

7.6 Key Management

An XML structure for the key collections and the pool of encrypted nodes
from figure 7-21 is shown in table 7-2. In this example, the <KeyCollection>
elements for each user contains an encrypted blob of <NodeKey> elements. In
practice, this is a W3C XML encrypted <xenc:CipherData> element. In this
example, the node keys are not shown encrypted in order to illustrate the
mapping between the illustration and the XML structure.

Figure 7-21: Multiple KeyCollections and the pool of encrypted nodes

<EncryptedPool

 xmlns="http://www.xmlsecurity.org/experimental#"

 StepSizeBits="128"

 >

 <EncryptedNodes>

 <EncryptedNode NodeID="77nb4">8sgpAqJYRb+T">qBmlxb7jlqmV...</EncryptedNode>

 <EncryptedNode NodeID="fU5sH">svljA3FHVt3BGgx0BEWCVUBEl2...</EncryptedNode>

 <EncryptedNode NodeID="REST6">gNj5pT/PYS3F4rtPCqJ4S3BGgx...</EncryptedNode>

 <EncryptedNode NodeID="x1m3L">tTkrXkAVJRJFWSgtUtRju+Ndef...</EncryptedNode>

 <EncryptedNode NodeID="93HzG">LK96e+kbsyH1qPeH7zRAcIwxQQ...</EncryptedNode>

 <EncryptedNode NodeID="K7FFe">a37dOqlnzsxBK9hdCq1BWqupPS...</EncryptedNode>

 <EncryptedNode NodeID="8ZtW2">kBJxUawVDLxUGEWtTE+l7+G3fd...</EncryptedNode>

 </EncryptedNodes>

 <KeyCollections>

 <KeyCollection UserID="Alice">

 <xenc:CipherData> <!-- encrypted under Alice's key -->

 <NodeKey NodeID="fU5sH">Xd6GdCQQR76Pz5ErO1Vpxgkks1sdfg...</NodeKey>

 <NodeKey NodeID="K7FFe">hyQCq5BIht1je1fDnf+R4zBcq5oxcv...</NodeKey>

Example 7-2: XML structure for KeyCollections and the pool of encrypted nodes

node key #77nb4NodeID #77nb4

node key #x1m3LNodeID #x1m3L

node key #93HzGNodeID #93HzG

node key #K7FFeNodeID #K7FFe

NodeID #fU5sH node key #fU5sH

NodeID #REST6 node key #REST6

KeyCollection for user Bob

NodeID #fU5sH node key #fU5sH

NodeID #K7FFe node key #K7FFe

KeyCollection for user Alice

encrypted node #fU5sHNodeID #fU5sH

encrypted node #REST6NodeID #REST6

encrypted node #x1m3LNodeID #x1m3L

encrypted node #93HzGNodeID #93HzG

encrypted node #K7FFeNodeID #K7FFe

encrypted node #8ZtW2NodeID #8ZtW2

encrypted node #77nb4NodeID #77nb4

Pool of EncryptedNodes
115

7 XML Pool Encryption
7.6.3 Collaboration of users
Each user who is allowed to decrypt a particular encrypted node is given the
node key for that encrypted node. All node keys for a user are grouped in the
KeyCollection owned by this user. A KeyCollection is mathematically a set of
node keys. Two users which are allowed to decrypt an encrypted node have
the same node key in their own KeyCollection.
Multiple users with (partly) disjunctive KeyCollections can collaborate to
decrypt a larger part of the tree: By merging their KeyCollections, a larger set
is composed which decrypts a larger part of the tree.
Given that user has the keys and so that the encrypted nodes and

 can be decrypted. User has the keys and so that the encrypted
nodes and can be decrypted. By merging their key sets, the nodes ,

 and can be decrypted.
Generally, the disclosure of information by intended users is a problem that is
impossible to solve. One common solution is to constrain the environment in
a way that the contents can only be viewed on trusted terminals which are
under physical control of the encryptor. In such an environment, guard per-
sonnel can ensure that no physical copies like handwritten papers or photo-
graphs of the confidential contents are taken. This raises the protection level
to a degree that only information can be disclosed which has been remem-
bered by the user. Generally, trusted insiders can always disclose confidential
information to non-authorized parties.

 </xenc:CipherData>

 </KeyCollection>

 <KeyCollection UserID="Bob">

 <xenc:CipherData> <!-- encrypted under Bob's key -->

 <NodeKey NodeID="77nb4">6ElRSPVk9aP2gjrPvz4gg7vplylq3d...</NodeKey>

 <NodeKey NodeID="fU5sH">Xd6GdCQQR76Pz5ErO1Vpxgkks1sdfg...</NodeKey>

 <NodeKey NodeID="REST6">bjI4dETkYQ4AVVzyHJizMJ/tgQsdfg...</NodeKey>

 <NodeKey NodeID="x1m3L">MdxBbGOYzBE0xvaiq9St+bIIyPsd<g...</NodeKey>

 <NodeKey NodeID="93HzG">UkC4l4P9rCks3u9TznBDfWgmsdfgsv...</NodeKey>

 <NodeKey NodeID="K7FFe">hyQCq5BIht1je1fDnf+R4zBcq5oxcv...</NodeKey>

 </xenc:CipherData>

 </KeyCollection>

 </KeyCollections>

</EncryptedPool>

Example 7-2: XML structure for KeyCollections and the pool of encrypted nodes

A k1 k2 N1
N2 B k1 k3

N1 N3 N1
N2 N3
116

7.7 XML Structure
7.7 XML Structure
The complete data related to XML Pool Encryption is stored at a single place
inside the public document, the EncryptedPool element. The EncryptedPool
element contains both the pool of encrypted nodes and the key collections
for the users. The following example explains the structure of the Encrypted-
Pool element (where "?" denotes zero or one occurrence; "+" denotes one or
more occurrences; and "*" denotes zero or more occurrences).

Figure 7-22 on page 117 is the graphical representation of that structure.

<EncryptedPool StepSizeBits="...">

 <EncryptedNodes>

 <EncryptedNode NodeID="...">+

 Base64-encoded ciphertext

 </EncryptedNode>

 </EncryptedNodes>

 <KeyCollections>?

 <KeyCollection UserID="...">+

 <!-- This is encrypted under the user’s key -->

 <xenc:CipherData>

 <NodeKey NodeID="...">+

 Base64-encoded node key

 </NodeKey>

 </xenc:CipherData>

 </KeyCollection>

 </KeyCollections>

</EncryptedPool>

Figure 7-22: XML Pool Encryption structure

<EncryptedPool StepSizeBits="128">

<EncryptedNodes>

<EncryptedNode NodeID="abc123">

<EncryptedNode NodeID="xyz987">

<KeyCollection UserID="Alice">

<KeyCollection UserID="Bob">

<xenc:CipherData>

<NodeKey NodeID="abc123">

<NodeKey NodeID="xyz987">

<KeyCollections>
117

7 XML Pool Encryption
The EncryptedPool element has an attribute StepSizeBits from which the step-
size for the given public document can be calculated. For instance, if the value

of this attribute is StepSizeBits="128", then the stepsize is . The
EncryptedPool element has two child elements, the EncryptedNodes element
and the KeyCollections element.
The EncryptedNodes element contains one or more EncryptedNode ele-
ments. Each EncryptedNode element has a NodeID attribute which contains
the node identifier. The text inside the element itself is the base64-encoded
ciphertext of the encrypted node.
The KeyCollections element contains one or more KeyCollection elements.
Each KeyCollection element has a UserID attribute which helps users to find
out which KeyCollection contains their node keys. Inside the KeyCollection
element is a W3C XML Encryption element (xenc:CipherData) which con-
tains the node keys, which were encrypted under the user’s key.
Besides the actual node key, each NodeKey element has a NodeID attribute to
link to the encrypted node.

7.8 Dummy Nodes
The number of encrypted nodes in a pool of encrypted nodes allows an
attacker to determine how many confidential nodes have been removed from
the plaintext document. Given the security service prevention of traffic flow
analysis (see also “Security mechanisms for traffic flow confidentiality” on
page 16), a similar service can be defined for encrypted trees: An attacker
should not be able to gain knowledge about how many confidential nodes
have been in the plaintext document. It should be hidden from both legiti-
mate users and attackers how the original structure had been. A legitimate
user who is given all node keys can decrypt and reconstruct the full docu-
ment, but he should never know that he reached this state.
Based on the available node keys, three different classes of attackers are
defined:

1. Attackers without access to any node key.

2. Attackers and users with access to a reduced set of node keys.

3. Users with access to the all node keys.

An attacker without any node key has only access to the public document
which contains public nodes. The attacker has access to the pool of
encrypted nodes. From this pool of encrypted nodes, the attacker can count
how many encrypted nodes exist. The stepsize allows to calculate how many
confidential nodes can exist in the given public document.
For a cryptographically strong value for the stepsize, the size of a pool of
encrypted nodes is multiple orders smaller than the possible number of confi-
dential nodes.
An attacker or user with access to a reduced set of node keys can decrypt
some encrypted nodes and therefore reconstruct parts of the document. After

S 2128=
118

7.9 Syntax for the algorithms
the decryption, the attacker can count how many encrypted nodes remain
undecrypted. In contrast to the previous attacker, he knows some interstitial
label values, so he can make a better assumption on how many nodes have
space in particular areas of the tree.
For a cryptographically strong value for the stepsize, the number of decrypted
nodes size is multiple orders smaller than the possible number of confidential
nodes.
A user with full access to all node keys can fully reconstruct the original plain-
text document. Is such a user an attacker? It seems that this user already has
access to all nodes, but that is not the case: It can be hidden from this user
that he has already decrypted all nodes.
The interstitial label values assigned to confidential nodes are randomly cho-
sen. It can be prevented that the user gets this assurance, if the stepsize is cho-
sen to be cryptographically strong (e.g. 64 bit) and if the DACP adds dummy
nodes to the pool of encrypted nodes.
A dummy node is the analogy to the data padding and dummy events from
the traffic flow confidentiality security service. The node key required to
decrypt a dummy node is not given to any user, therefore all users must
assume that the dummy node contains a confidential node which they are not
allowed to see. Only the DACP is able to distinguish between encrypted nodes
and dummy nodes.

7.9 Syntax for the algorithms
The following sections provide a detailed description of the algorithms for
node selection, pool encryption and pool decryption. The algorithms are
described using a textual and graphical algorithm description. The textual
description highlights the general idea of the procedures while the graphical
representation contains details that are more specific.
In order to keep the descriptions and the flowcharts short and precise, at
some places object-oriented, Java-like statements are used. Many of the opera-
tions work on nodes in a tree, more specifically on XML nodes in a DOM tree.
For manipulating these nodes or retrieving properties from these nodes, stan-
dard DOM method calls are used on these nodes. For example, the check
whether a specific node called xNode has children will be represented by the
xNode.hasChildren() DOM method, both in the textual and the graphical
descriptions.
119

7 XML Pool Encryption
7.10 Node selection procedure
The XML Pool Encryption model introduces two classes of entities: DACPs
(‘document access control service’) and users (see page 85). A DACP encrypts
an XML document. A DACP may act on behalf of a user. One or more users
decrypt the document (or portions thereof). This section formally describes
the processes which are carried out to encrypt and decrypt the document.

7.10.1 Overview
The DACP transforms a plaintext document into a public document which
contains encrypted nodes. The intent of the DACP is to protect confidential
portions of that document so that only authorized users can read them. The
DACP classifies the plaintext document’s contents (the nodes) by given confi-
dentiality requirements, the ConfidentialitySpecification.
The ConfidentialitySpecification contains a list of all confidential nodes and
describes which users are permitted to see which of the confidential nodes.
Nodes which are not confidential are called public nodes. The public nodes
can be read by any user who possesses the public document, regardless
whether the user possesses node keys or not. The confidential nodes are only
accessible to users who possess the matching node key.

7.10.2 Algorithm
The node selection procedure receives two input arguments:

❏ the plaintext document plaintextDocument

❏ a ConfidentialitySpecification which maps users to confidential nodes.

All nodes which are confidential as defined by the ConfidentialitySpecification
are selected by the node selection procedure. After the node selection proce-

Figure 7-23: XML Pool Encryption procedures

The user(s) apply these procedures

node selection procedure

po
ol

en
cr

yp
ti

on
pr

oc
ed

ur
e

labeling procedure

pruning procedure

node encryption procedure

node decryption procedure

po
ol

de
cr

yp
ti

on
pr

oc
ed

ur
e

re-labeling procedure

node restoration procedure

The DACP applies these procedures
120

7.11 Pool encryption procedure
dure, a set called setOfConfidentialNodes exists that is an unordered collection
of the plaintext document’s confidential nodes. The setOfConfidential-Nodes
contains numberOfConfidentialNodes confidential nodes.

The node selection procedure returns

❏ the setOfConfidentialNodes.

7.10.3 Example
Based on figure 7-9 on page 99, an example for a ConfidentialitySpecification
could look like in table 7-4:

The above ConfidentialitySpecification defines that the user Alice is allowed to
decrypt the nodes E, F, J, M, N, P, U and V. The user Bob is only allowed to
decrypt the smaller subset N, P and the node O. Alice can decrypt 8 nodes,
Bob can decrypt 3 nodes. The union of these both node sets contains 9 nodes:

setOfConfidentialNodes = (//E | //F | //J | //M | //N | //O | //P | //U | //V)

All other nodes in the document are public nodes.

7.11 Pool encryption procedure
The pool encryption procedure receives following input arguments:

❏ the plaintextDocument,

❏ the stepSize parameter,

❏ the ConfidentialitySpecification with the setOfConfidentialNodes,

❏ the encryption algorithm required to encrypt a node and

❏ a cryptographically secure randomBitGenerator.

The pool encryption procedure performs the following steps:

1. the labeling procedure is executed,

2. the pruning procedure is executed,

3. the node encryption procedure is executed,

The pool encryption procedure produces the following results:

User XPath expression to select the confidential nodes

Alice (//E | //F | //J | //M | //N | //P | //U | //V)

Bob (//N | //O | //P)

Table 7-4: Example for a ConfidentialitySpecification
121

7 XML Pool Encryption
❏ the encryptedDocument,

❏ the poolOfEncryptedNodes and

❏ for each user a KeyCollection.

7.11.1 Labelling procedure

7.11.1.1 OVERVIEW

The labeling procedure applies the Modified Adjacency List Mode (MALM) to
the plaintext document. The description of this procedure and examples are
found earlier in this chapter, beginning with ““Modified Adjacency List Mode”
(MALM)” on page 102.

7.11.1.2 ALGORITHM

The labeling procedure receives following input arguments:

❏ the plaintextDocument,

❏ the stepSize parameter,

❏ the setOfConfidentialNodes and

❏ a cryptographically secure randomBitGenerator.

The labeling procedure produces the following result:

❏ The getLabelByNode map for all nodes in the plaintext document.
This map is a mapping structure which returns the label which belongs
to a given node. (“What label values has node X?”)

The labeling procedure is performed by a TreeLabeler, which provides two
methods:

❏ TreeLabeler.process traverses the complete document tree (figure 7-24
on page 123) and

❏ TreeLabeler.label which assignes a label to a node (figure 7-25 on page
124).

TreeLabeler.process. The TreeLabeler.process method

1. assigns the left value to the current node X,

2. recursively calls TreeLabeler.process on every child of the current
node X if X has children and

3. assigns the right value to the current node.
122

7.11 Pool encryption procedure
Note that TreeLabeler.process is a recursive method, as it performs the tree tra-
versal in a recursive way. For that reason, the program flow diagram explicitly
shows that recursion.

TreeLabeler.label. The TreeLabeler.label method assigns left values and right
values to a node’s label.

1. If the current node is a confidential node, the node is pushed into the
queue.
When encountering a confidential node during the tree traversal, it is
not yet clear whether other confidential nodes directly follow the cur-
rent one. Therefore, all confidential nodes are stored in the queue.

2. If the current node is a public node, it is checked whether the queue
contains confidential nodes.

3. If the queue contains confidential nodes, the ValueGenerator creates
one interstitial label value for each confidential node. Then these inter-
stitial label values are assigned to the labels of the confidential nodes in
the queue and the queue is emptied.

4. The current even label value is assigned the to the label of the current
node.

Figure 7-24: TreeLabeler.process algorithm

n

y
X has children

call TreeLabeler.label(X) for left value

for each child of X call TreeLabeler.process(Y)

call TreeLabeler.label(X) for right value

start recursion

end recursion

Start

End

TreeLabeler.process(node X):void
123

7 XML Pool Encryption

Co
ar
qu
pr

e
e.

A p
be
tha
con
in t
mu
The inner structure of the TreeLabeler.label() method is shown in figure 7-25
on page 124.

Figure 7-25: TreeLabeler.label algorithm

nfidential nodes
e pushed into the
eue for later
ocessing...

add node to queue

set label xLabel to interstitial

End

n

y
confidential node

n

y

confidential
nodes on queue

Get or create the label
for the plaintext node

n

y
left value

get existing label 'xLabel'

create new label 'xLabel'

bind label xLabel to node

Assign value to th
plaintext nod

set label xLabel to even

get next even label
value from generator

End

n y
xLabel has left

value

assign i'th interstitial value
to xLabel's right value

assign i'th interstitial value
to xLabel's left value

laintext node must
labeled, but before
t, all skipped
fidential nodes
he queue
st be handled.

n y
iLabel has left

value

n y
i > queueSize

get the i'th confidential
node from the queue

(iNode[i])

get the label for the
confidential node

(iLabel)

i=0

i=i+1

assign i'th interstitial value
to iLabel's right value

assign i'th interstitial value
to iLabel's left value

create one interstitial
value for each node

in the queue

StartTreeLabeler.label(Node node, Vector queue, boolean isLeftValue):void
124

7.11 Pool encryption procedure

con

H

7.11.2 Pruning procedure

7.11.2.1 OVERVIEW

During the pruning procedure, all confidential nodes are removed from the
plaintext document (figure 7-26).

7.11.2.2 ALGORITHM

For each confidential node in the setOfConfidentialNodes, the pruning proce-
dure replaces the confidential node by its child nodes. This is done by execut-
ing the fosterChildrenToGrandparents algorithm on each confidential node.
Figure 7-27 shows an example for removing the confidential node B from the
document:

In figure 7-27/1, there is the confidential node B which has three child nodes
(D, E and F). The next sibling of B is the node G. In the subsequent steps
(7-27/2 to 7-27/4), the first child of B is removed from B’s children and
inserted before G as a child of A. After fostering the children (D, E and F) to

Figure 7-26: Pruning the tree

Figure 7-27: fosterChildrenToGrandparents example

D

E

B

AA

CC

FF

AA

CC FF

grandParent

nextSiblingfidential
node

A

BC

D E F

G H

1

children

A

BC

D

D

E F

G H

2

A

BC D E

E F

G

3

A

BC D E F

F

G H

4

A

C D E F G H

5

125

7 XML Pool Encryption
their grandparent, the confidential node B is removed from the document
(7-27/5).
The algorithm is shown in figure 7-28 below:

After the pruning procedure, the public document contains only the public
nodes. The labels of the public nodes are all even labels, i.e. the label values of
the even label’s are a multiple of the stepsize . As the result, the complete
labeling of the public document can be reconstructed if only the stepsize is
known.
The pruning procedure receives following input arguments:

❏ the plaintextDocument and,

❏ the setOfConfidentialNodes.

7.11.3 Node encryption procedure

7.11.3.1 OVERVIEW

After the pruning procedure, the removed confidential nodes are encrypted
by the node encryption procedure. Each confidential node and its associated
label are encrypted under a unique node key. This step produces the
encrypted nodes which are collected in a pool of encrypted nodes. The DACP
must generate one unique node key for each confidential node.

7.11.3.2 ALGORITHM

The plaintext document contains now labeled confidential nodes which have
to be encrypted. For each of these confidential nodes,

Figure 7-28: fosterChildrenToGrandparents algorithm

n

y

node has children

nextSibling = next sibling of node

grandParent = parent of node

remove node from grandParent

Start

End

detach leftmost child from node

insert child before nextSibling

foreach child of node

S
S

126

7.12 Pool decryption procedure
1. the DACP generates a unique bit sequence using a pseudo-random bit
generator. This bit sequence is base64-encoded into a text string. This
text string is called currentNodeKeyIdentifier.

2. The DACP generates a unique node key called currentNodeKey.

3. The label of the confidential node, called
currentConfidentialNodeLabel, is concatenated with the confidential
node’s plaintext data. This is the input octets for the encryption algo-
rithm and is called currentPlaintext.

4. The currentPlaintext is encrypted using the currentNodeKey. The
encrypted result is called currentCiphertext.

5. The currentCiphertext is base64-encoded and forms the
<EncryptedNode> element’s content. The currentNodeKeyIdentifier is
added to the <EncryptedNode> element as an attribute.

Using this process, all confidential nodes are encrypted. The <Encrypted-
Node> elements are all grouped in a single <PoolOfEncryptedNodes> element.
Then each currentNodeKey is combined with it’s currentNodeKeyIdentifier as
already shown in example 7-2 on page 115.

7.12 Pool decryption procedure

The pool decryption procedure receives following input arguments:

❏ the publicDocument,

❏ the stepSize parameter (that is stored inside the publicDocument),

❏ the <PoolOfEncryptedNode> element (that is stored inside the
publicDocument),

❏ the encryption algorithm required to decrypt the nodes (that is stored
inside the publicDocument) and

The user(s) apply these procedures

node selection procedure

po
ol

en
cr

yp
ti

on
pr

oc
ed

ur
e

labeling procedure

pruning procedure

node encryption procedure

node decryption procedure

po
ol

de
cr

yp
ti

on
pr

oc
ed

ur
e

re-labeling procedure

node restoration procedure

The DACP applies these procedures
127

7 XML Pool Encryption
❏ a set of currentNodeKeys and their associated currentNodeKeyIdentifiers
(which are available after the user decrypted his KeyCollection)

The pool decryption procedure performs the following steps:

1. the node decryption procedure is executed (which results in the
decrypted nodes and their labels),

2. the labeling procedure is executed (which assigns labels to the public
nodes),

3. the node restoration procedure is executed (to restore the decrypted
nodes in the document).

The pool decryption procedure produces the following result:

❏ the decryptedDocument.

7.12.1 Node decryption procedure

7.12.1.1 OVERVIEW

To perform the node decryption procedure, a user must possess

❏ the public document (including the pool of encrypted nodes and the
node key collections for the different users) and

❏ the key to decrypt his own KeyCollection, in which the node keys for
‘his’ encrypted nodes.

Each node key has a node identifier which serves as a unique link between
the encrypted node and the node key and vice versa. The encrypted node is
decrypted using the node key. The result of this decryption process is the
node’s plaintext data and its label.
The node decryption procedure decrypts all encrypted nodes for which the
user possesses a node key.

7.12.1.2 ALGORITHM

1. Locate the <KeyCollection> element inside the public document that
is intended for the user (based on the UserID attribute).

2. Decrypt the content of the <KeyCollection> element using the user’s
key. This decryption returns the <NodeKey NodeID=".."> elements,
i.e. the node keys and the associated node identifiers which had been
encrypted for that user.

3. For each node key, decrypt the corresponding encrypted node using
the node key. That produces the set of decrypted nodes, i.e. nodes’
plaintext data and their labels.
From the node’s plaintext data, the node’s XML structure is recon-
structed.
128

7.12 Pool decryption procedure
After this operation, the user possesses a set of labeled decrypted nodes.

7.12.2 Node restoration procedure

7.12.2.1 OVERVIEW

Before the decrypted nodes can be restored, the user must re-label the public
document. The <EncryptedPool> element contains the stepsize parameter, so
that the public document can be labeled using the MALM algorithm. After that
operation, the user possesses a labeled public document. The node restora-
tion procedure takes this labeled public document and the decrypted nodes
as input and inserts the decrypted nodes into the appropriate positions.

7.12.2.2 ALGORITHMS FOR THE NODE RESTORATION

The node restoration procedure requires three functions:

❏ The restoreNode function does the restoration of the decrypted node.

❏ The getNearestAncestor function is a helper function for the restoreNode
function. It is necessary for locating the parent of a decrypted node.

❏ The parentalizeOrphan function supports restoreNode with properly re-
connecting child nodes of a decrypted node.

The restoreNode function inserts the decrypted node into the public docu-
ment. It requires that the public document is labeled and that the label of the
decrypted node is known. In order to perform this task, the restoreNode func-
tion has to

1. identify which node inside the decrypted document is the parent node
of the decrypted node (done by the getNearestAncestor function) and

2. if that parent node already has child nodes,

❍ determine where exactly in the sequence of existing child nodes
the new node must be prepended, inserted between or appended
and

❍ determine whether some of the decrypted node’s siblings are not
siblings but must be turned into children of the decrypted node,
and if so, which ones (both done by the parentalizeOrphan func-
tion).

Before describing the details of the restoreNode function, the algorithms for
the getNearestAncestor function and the parentalizeOrphan function are
shown.
129

7 XML Pool Encryption
7.12.2.2.1 getNearestAncestor algorithm
The getNearestAncestor algorithm is a helper algorithm for the restoreNode.
getNearestAncestor determines the nearest ancestor for the decrypted node
that is to be restored. The purpose is that the result of getNearestAncestor
serves as a parent node for the decrypted node that is re-inserted into the doc-
ument.

The algorithm works as follows:

❏ A variable bestMatch stores the nearest ancestor. At the beginning, best-
Match is initialized with the symbolic value ‘NOT_FOUND’.
bestMatch always contains either the ‘NOT_FOUND’ value or an ancestor
of the decrypted node.

❏ Each node in the document must be ‘inspected’, i.e. it must be checked
whether the node in question is the nearest existing ancestor for the
decrypted node.

1. Each node which is not an ancestor of the decrypted node is
skipped (this ensures that bestMatch always contains an ances-
tor).

2. If the node in question is a descendant of the bestMatch, the
value of bestMatch is overwritten with the node.
The node is an ancestor (this was ensured in step 1), and if the
node is a descendant of bestMatch, this means that the node is a
nearer ancestor than bestMatch.

❏ After inspecting each node in the document, the bestMatch is returned.

The algorithm is illustrated in figure 7-29 on page 131.

Both getNearestAncestor and restoreNode must be able to decide whether a
given node from the document is an ancestor, a descendant, or a following
sibling of the decrypted node. The obvious problem is that the decrypted
node is not in the document, so that the labels must be used.
130

7.12 Pool decryption procedure
To determine the relationship between two nodes which can only be
inspected based on their labels, the relationships from table 7-3 on page 97
are used.

Figure 7-29: getNearestAncestor algorithm

n
y

node is ancestor
of decrypted node

bestMatch = NOT_FOUND

select uninspected node in document

return bestMatch

bestMatch = node

Start

n
y

node is descendant
of bestMatch

n
y

all nodes in
document inspected

End
131

7 XML Pool Encryption
7.12.2.2.2 parentalizeOrphan algorithm
The parentalizeOrphan algorithm is a helper algorithm for the restoreNode
algorithm. The parentalizeOrphan algorithm is used when adding a decrypted
node to a parent which already has children from which some must become
children of the decrypted node.
parentalizeOrphan adds the decrypted node to the children of its parent,
determines all children of the decrypted node and moves them into the right
place.

In the example in figure 7-30, the decrypted node B must be added to its par-
ent node A. The restoreNode function (described in the next section) deter-
mines that A’s child nodes D, E and F must be made children of B. restoreNode
determines the first and the last child of A’s children which must be relocated
into B. B must be put into the place which was previously occupied by D, E
and F.
Before executing parentalizeOrphan, the next sibling of the node C is D.
After executing parentalizeOrphan, the next sibling of the node C is B.

Before executing parentalizeOrphan, the previous sibling of G is F.
After executing parentalizeOrphan, the previous sibling of G is B.

The parentalizeOrphan algorithm works as follows:

❏ The decrypted node is inserted after lastChild.

❏ All nodes between firstChild and lastChild are relocated into the
decrypted node.

Figure 7-30: parentalizeOrphan example

A

B

A

C D E F G H C

D E F

G H

B

firstChild lastChild

firstChild lastChild

parent

decrypted node

before executing parentalizeOrphan after executing parentalizeOrphan

children
132

7.12 Pool decryption procedure

C H

C

Figure 7-31 shows this process in more detail:

When parentalizeOrphan is called, the node B is not yet inserted (7-31/1). B is
inserted after the lastChild F (7-31/2). Beginning with node D (7-31/3), all
nodes which must be made children of B are moved into their new position
(7-31/4 and 7-31/5). The result of that process is shown in figure 7-31/6.

Figure 7-31: Detailed parentalizeOrphan example

Figure 7-32: parentalizeOrphan algorithm

A

B

A

D E F G H

C

D

D

D

E

E F

G H

B

firstChild lastChild

A

C D E F G HB

A

C E F GB

D

A

E

F G HB

1 2 3

4 5

E

A

BC

D E F

G H

6

insert newParent after lastChild

detach node from parent

append node to children of newParent

foreach node between firstChild and lastChild

Start

End
133

7 XML Pool Encryption
7.12.2.2.3 restoreNode algorithm
Figure 7-33 shows the restoreNode function which does restoration.

The purpose of the restoreNode function is to perform the node restoration
procedure. For doing this, it requires both the getNearestAncestor and
parentalizeOrphan functions.
The input to the restoreNode function is

❏ a labeled document and

Figure 7-33: restoreNode algorithm

n

n

n

y

n
y

n

y n

y

y

y

parent has children

child of parent must be
made child of decrypted

node

already identified
firstChild

all parent child
nodes processed

identified a
firstChild

child is following
the decrypted node

parent = getNearestAncestor(node)

select first child of parent

firstChild = child

lastChild = child

parentalizeOrphan(firstChild, lastChild, node)

select next child of parent

firstFollowing = child

restoreNode

Start

End

insert node before firstFollowing

append node to parent
134

7.12 Pool decryption procedure
❏ a decrypted node.

The algorithm does the following:

1. The parent of the decrypted node is determined by the
getNearestAncestor function.

2. If the parent has no children, the decrypted node is appended to the
parent directly.

3. If the parent has children, it must be determined if some the current
children of the parent node must become children of the decrypted
node and where in the children list the decrypted node must be
inserted.
For doing this, the algorithm iterates over the children of the parent.
The term ‘childOfParent’ refers to the parent’s child node which is cur-
rently analyzed.

1. If the childOfParent is a descendant of the decrypted node, it
must be marked for relocating into the decrypted node. This is
done storing the first descendant node in the firstChild variable.
Additionally, each descendant is stored in the lastChild variable
(overriding previous values).

2. If a childOfParent is following the decrypted node, it is stored in
the firstFollowing variable. Once such a node is detected, the
iterating over the child nodes of the parent stops.

4. If the algorithm detected a firstChild, then parentalizeOrphan is called
to foster all child nodes between firstChild and lastChild into the
decrypted node and to put the decrypted node into the right place.

5. If the algorithm detected no firstChild, the decrypted node is added to
the parent node before firstFollowing.
135

7 XML Pool Encryption
7.13 A restoration example
The following example shows how the algorithms described in the previous
sections restore a public document after three nodes and their associated
labels have been decrypted (figure 7-34).

The first step is to re-label the public document, using the given stepsize . A
“Modified ALM” traversal is performed on the public document. After that tra-
versal, all public nodes in the public document are labeled with the even label
values (see figure 7-35).

After that re-labeling step, all nodes (public nodes and decrypted nodes) have
labels, but the decrypted nodes are not yet restored in the document.
This section shows how the three decrypted nodes have to be restored in the
document. The sequence in which the decrypted nodes are restored is not
important to the result. In this example, the node B is restored at first, then E
and D follow.

Figure 7-34: Input to the node restoration procedure

Figure 7-35: Re-labeled public document

D 3921392134323432

E 3764376434453445

B 3012301211231123AA

CC FF

S=1000

S

AA 6000600010001000

CC 3000300020002000 FF 5000500040004000
136

7.13 A restoration example

firstCh

lastChi

50005000

of B
7.13.1 First node restoration example
The first node to be restored is node B. The node B has the label (1123,3012).
According to figure 7-33 on page 134, the first step of the restoreNode algo-
rithm is to call getNearestAncestor in order to determine the parent node for B.

The getNearestAncestor algorithm (figure 7-29 on page 131) iterates over the
nodes in the document and detects that the node A (1000,6000) is the nearest
ancestor of B (1123,3012).
The node A has children, therefore restoreNode iterates over the child nodes of
A. The first node, C (2000,3000) is a descendant of B (1123,3012). Therefore, C
is marked to be the firstChild of B. Additionally, it is marked to be the lastChild
of B. The next node F (4000,5000) is following B (1123,3012), therefore F is
marked to be firstFollower of B and the iteration over A’s children terminates
(see the restoreNode algorithm in figure 7-33 on page 134).

During the iteration over A’s children, the firstChild value has been set, there-
fore restoreNode uses the parentalizeOrphan algorithm (figure 7-32 on page
133) to integrate the decrypted node B into the document.

parentalizeOrphan(firstChild=C,lastChild=C,node=B) is called: B is inserted after
the lastChild (in that case after the C node). After that, all child nodes from
firstChild to lastChild (in that case only the C node itself) are detached from
their parent node and are made children of B.
The result of restoring node B is shown in figure 7-36.

Figure 7-36: First node restoration example

B 3012301211231123

AA 6000600010001000

CC 3000300020002000 FF 5000500040004000

parent of node B

ild of B

firstfollowing of Bld of B

parent of node B

B 3012301211231123

AA 6000600010001000

CC 3000300020002000 FF40004000

firstChild of B

firstfollowinglastChild of B
137

7 XML Pool Encryption

fir

la
7.13.2 Second node restoration example
The next node to be restored is node E. The node E has the label (3445,3764).
The first step of the restoreNode algorithm is to call getNearestAncestor in
order to determine the parent node for E. getNearestAncestor (figure 7-29 on
page 131) iterates over the nodes in the document and detects that the node A
(1000,6000) is the nearest ancestor of E (3445,3764).

The node A has children, therefore restoreNode iterates over the child nodes of
A. The first node, B (1123,3012) is a preceding node to E (3445,3764). The
next node F (4000,5000) is following B (1123,3012), therefore F is marked to
be firstFollower of B.

During the iteration over A’s children, both the firstChild and the lastChild val-
ues have not been set, therefore restoreNode just inserts the decrypted node
before the firstFollowing node E (algorithm on figure 7-32 on page 133).

The result of restoring node E is shown in figure 7-37.

Figure 7-37: Second node restoration example

parent of node E

B 3012301211231123

E 3764376434453445

AA 6000600010001000

CC 3000300020002000

FF 5000500040004000

firstfollowing of E

stChild of E = not found

stChild of E = not found
parent of node E

B 3012301211231123 E 3764376434453445

AA 6000600010001000

CC 3000300020002000

FF 5000500040004000

firstfollowing of E
138

7.13 A restoration example

11231123

20002000

50005000

D

7.13.3 Third node restoration example
The last node to be restored is node D. The node D has the label (3432,3921).
getNearestAncestor (figure 7-29 on page 131) detects that the node A

(1000,6000) is the nearest ancestor of D (3432,3921).

The node A has children, therefore restoreNode iterates over the child nodes of
A. The first node, B (1123,3012) is a preceding node to D (3432,3921). The
next node E (3445,3764) is a descendant of D (3432,3921). Therefore, E is
marked to be the firstChild of D. Additionally, E is marked to be the lastChild of
D. The next child of A is F. The node F (4000,5000) is following D (3432,3921),
therefore F is marked to be firstFollower of D and the iteration over A’s chil-
dren terminates.

During the iteration over A’s children, the firstChild value has been set, there-
fore parentalizeOrphan(firstChild=E,lastChild=E,node=D) is called: D is inserted
after the lastChild (in that case after the E node). After that, all child nodes
from firstChild to lastChild (in that case only the E node itself) are detached
from their parent node and are made children of D.

The result of restoring node D is shown in figure 7-38.

Figure 7-38: Third node restoration example

D 3921392134323432

parent of node D parent of node D

B 30123012 E 3764376434453445

AA 6000600010001000

CC 30003000

FF 5000500040004000

firstChild of D
lastChild of D firstChild of D

lastChild of D

D 3921392134323432

B 3012301211231123

E 3764376434453445

AA 6000600010001000

CC 3000300020002000

FF40004000

firstfollowing of D
firstfollowing of
139

7 XML Pool Encryption
After restoring these three nodes, the example document looks like in
figure 7-39:

7.14 Encryption granularity
The XML Pool Encryption system must be capable to encrypt XML informa-
tion set items. For a list of infoset items and their respective properties, see
table 3-1 on page 34.
For each item type, the following sections evaluate whether it makes sense to
encrypt the item and which infoset properties of the item have to be
encrypted, i.e. which node data is the confidential content of a given node.
For instance, a text node’s properties are the character information items
which consist the text itself.

7.14.1 Document information item
Each document has exactly one single “document information item”, but this
item only serves as a synthetic node which must exist in order to have a single
root for the tree. The document information item has no physical representa-
tion in the serialized document and does not contain confidential information.
Therefore, the document information item is not considered for encryption.

Figure 7-39: Result of the node restoration procedure examples

D 3921392134323432

E 3764376434453445

B 3012301211231123

AA 6000600010001000

CC 3000300020002000

FF 5000500040004000
140

7.14 Encryption granularity
7.14.2 Comment information items
Comment information items are leaf nodes in the tree, i.e. they do not have a
[children] property. The only properties are the [content] and the [parent]
property. The [content] is the plaintext to be encrypted and the [parent] infor-
mation is the position of the node. As a comment cannot have any children, is
is sufficient if the right value of a comment is only greater than the left
value :

As the right value of a comment is always exactly 1 greater than the left value,
the right value is redundant. Therefore, it is not necessary to store and
encrypt it if a comment is encrypted. The left value contains all necessary
label information for a comment.
The plaintext serialization format for comments must contain (a) the type
information being set to ‘comment’, (b) the left value and (c) the value of
the comments [content] property.

7.14.3 Processing Instruction information items
Processing Instruction (PI) information items are leaf nodes in the tree, i.e.
they do not have a [children] property. The only properties are the [target] and
[content] properties, as well as the [parent] property. The [target] and
[content] properties are the plaintext to be encrypted. The [parent] informa-
tion is the position of the node. As a PI cannot have any children, the right-
value of a PI is defined to be only greater than the left value :

As the right value of a processing instruction is always exactly 1 greater than
the left value, the right value is redundant. Therefore, it is not necessary to
store and encrypt it if a processing instruction is encrypted. The left value
contains all necessary label information for a processing instruction.
The plaintext serialization format for PIs must contain (a) the type information
being set to ‘processing instruction’, (b) the left value and (c) the value of
both the [target] and [content] properties.

7.14.4 Element information items
Element information items have various properties: [parent] and [children] are
mapped to the position information of the element.
[prefix], [local name] and [namespace name] contain information about the syn-
tax and the semantics of the element itself.
Encryption of an element information item includes therefore (a) the type
information being set to ‘element’, (b) the left and the right values
and (c) the prefix, localname and namespace URI of the element.

PR 1
PL

PR Comment, PL Comment, 1+=

PL

PR 1 PL

PR PI, PL PI, 1+=

PL

PL PR,()
141

7 XML Pool Encryption
7.14.4.1 ATTRIBUTE HANDLING

The element has the [attributes] property which contains all attributes in the
given element. Depending on the decision of the user, the attributes of a
given element can be included in the encryption process of the element or be
excluded from the encryption process, so that each attribute must be
encrypted separately from the element.

Inclusion of attributes in the encrypted element node. When encrypting an
element information item like in example 7-3 on page 142, the encrypted
node contains the previously mentioned minimum set of information and the
two attribute information items. After successful decryption, the user does
have access to both the element information item and the two attributes.

Separate encryption of attributes. If the encryptor chose to encrypt element
and attributes separately, the user only sees the element information item
itself. The both attribute information items are stored in separate encrypted
nodes, like described in “Attribute information items” on page 143.

7.14.4.2 NAMESPACE HANDLING

The element information item has two properties which are related to the
namespace space: the [namespace attributes] property which contains all
namespace declarations which have an attribute representation in the given
element and the [in-scope namespaces] property which summarizes all
namespaces which are in scope, i.e. all namespaces declared in the given ele-
ment and in ancestor elements.
Given example 7-4, in which the <toBeEncrypted> element is to be
encrypted, while the <foo> element and the text child of <toBeEncrypted>
remain unencrypted.

The text node makes use of the bar prefix which is bound in the
<toBeEncrypted> element. After encrypting the <toBeEncrypted> element,
the xmlns:bar namespace declaration is no longer visible. Applications which
process the public document have no access to this important context infor-
mation. As namespaces can only be represented through special attributes,
the context cannot be stored for a text node itself.
For handling this problem, two different approaches exist:

<element attrA="foo" attrB="bar" />

Example 7-3: Element with attributes

<foo>

 <toBeEncrypted xmlns:bar="http://example.org/#bar">

 bar:someText

 </toBeEncrypted>

</foo>

Example 7-4: Not visibly utilized namespace
142

7.14 Encryption granularity
1. Elevate the namespace declaration to the parent element, so that the
resulting plaintext looks like in example 7-5. Unfortunately, this
approach has two drawbacks:

1. The information set of the <foo> element is changed, as its
[namespace attributes] and [in-scope namespaces] properties have
been polluted with a new namespace binding.

2. If the <foo> element already has an xmlns:bar binding with a dif-
ferent namespace URI, this process would destroy the infoset.

2. The only viable solution for this case is to include all [in-scope
namespaces] from the confidential node in its ancestor public node.

An encryption implementation cannot determine whether a given text node
(or attribute node value) requires a namespace binding. This is the reason
why exclusive c14n [BER02] introduces the “InclusiveNamespaces Prefix-
List”. This list enables applications to get explicit knowledge on which
namespace prefixes are used in text nodes or attribute values.

In example 7-6, the namespace prefix bar is visibly utilized by the unen-
crypted bar:baz attribute in the <foo2> element. This situation is very similar
to canonicalizing a document subset, in which the namespace declaration is
simply inherited by the <foo2> element.

7.14.5 Attribute information items
The position of an attribute information item is implicitly given through the
[owner element] property, i.e. the attribute has the same position as the owner
element.
[prefix], [local name] and [namespace name] and [normalized value] contain
information about the syntax of the attribute itself. Additionally, the [attribute
type] defines the type of the attribute. The attribute type is especially impor-
tant for ID-type attributes, as the attributes don’t have type after plain decryp-
tion, so that the [attribute type] allows to re-register the ID of an attribute in
some XML parser implementations.

<foo xmlns:bar="http://example.org/#bar">

 bar:someText

</foo>

Example 7-5: Plaintext after namespace elevation

<foo>

 <toBeEncrypted xmlns:bar="http://example.org/#bar">

 <foo2 bar:baz="something" />

 </toBeEncrypted>

</foo>

Example 7-6: Visibly utilized namespace
143

7 XML Pool Encryption
The [references] property is not considered, as it can only be set as a result of
a DTD-validation process. The [specified] property is not considered as it is
true for all attributes being encrypted.
Encryption of an attribute information item includes therefore (a) the type
information being set to ‘attribute’, (b) the left and the right values
of the owner element, (c) the prefix, localname and namespace URI of the
attribute, (d) the normalized attribute value, and the attribute type.
Additionally to this information, the [in-scope namespaces] of the [owner
element] is included in the attribute.

7.14.6 Namespace information items
Namespace information items carry the [prefix] and [namespace name] prop-
erties. Namespace information items are not encrypted separately, but are
always part of an element or attribute information item.

7.14.7 Character information items
Character information items are leaf nodes in the tree, i.e. they do not have a
[children] property. The [parent] property contains the position information of
the parent element. Based on the location of the character information item in
the [children] property of the [parent], the position of the character informa-
tion item is determined. The [character code] property contains the character
data itself.
As a character information item cannot have any children, the right-value
is defined to be only greater than the left value :

For that reason, the right value is redundant and obsoletes the need to serial-
ize it.
The plaintext serialization format for character information items must con-
tain (a) the type information being set to ‘character’, (b) the left value and
(c) the value of the [character code] property.
In order to allow efficient implementations, multiple character information
items can be grouped in a single encryption step.

7.14.8 Document Type Decl information items
A DTD describes constraints for the structure of an XML document. A DTD in
itself should not contain confidential material. Therefore, the encryption of
DTD information items is ruled out for the described prototype.

7.14.9 Unexpanded Entity Reference information items
The system is supposed to work on fully-parsed XML instances, so that no
“unexpanded entity references” occur.

PL PR,()

PR
1 PL

PR Char, PL Char, 1+=

PL
144

7.15 Correctness of the Modified Adjacency List Mode
7.14.10Unparsed Entity information items
The system is supposed to work on fully-parsed XML instances, so that no
“unexpanded entities” occur.

7.14.11Notation information items
The system is supposed to work on fully-parsed XML instances, so that no
“notations” occur.

7.15 Correctness of the Modified Adjacency List
Mode

7.15.1 Introduction
The XML Pool Encryption Process involves six different steps for encryption
and decryption:

1. The plaintext document is labeled, pruned and the confidential node
are encrypted to create the public document.

2. The encrypted nodes are decrypted, the public document is re-labeled
and the decrypted nodes are re-inserted into the document.

The purpose of this section is to prove that the pool decryption procedure
correctly recreates the plaintext document if the user is able to decrypt all
encrypted nodes. It is obvious that both plaintext document and decrypted
document differ from each other when the user did not restore all encrypted
nodes.
The pool decryption procedure must be the inverse of the node encryption
procedure, i.e. all nodes which have been encrypted must be decrypted. This
reduces the procedures to be covered in this proof to the labeling/re-labeling
and the pruning/restoration procedures.

Figure 7-40: Removing the node encryption from the process

labeling

pruning

node encryption

node decryption

re-labeling

node restoration

labeling

pruning

re-labeling

node restoration
145

7 XML Pool Encryption
Theorem to be proved by contradiction:

❏ Theorem T1: The application of the pool encryption procedure and
pool decryption procedure non-ambiguously and correctly encrypt and
decrypt a given document.

By taking node encryption and node decryption out of the equation, T1 is
transformed into T2 which has to be proved:

❏ Theorem T2: The application of the labeling, pruning, re-labeling and
restoration non-ambiguously and correctly restores a given document.

During the pruning procedure, confidential nodes are removed from the
plaintext document. During this process, the confidential node node is substi-
tuted by its descendants.

❏ Theorem T3: The pruning procedure does not change ancestor/descen-
dant and following/preceding relationships.

For the proof, the following facts are necessary:

❏ F1: The MALM’s labeling procedure generates a strictly monotonic
increasing sequence of label values.

❏ F2: The even labels of the public nodes are the same after the labeling
procedure (encryption) and after the node restoration procedure’s re-
labeling (decryption).

❏ F3: For each label value, it is non-ambiguously whether it is the left value
or the right value and to which node it belongs.

❏ F4: A decrypted node which is restored in the correct position does not
invalidate any on the given facts (F1-F3).

7.15.2 Proof of correctness

❏ Assumption A1: It is possible to restore a decrypted node in a wrong
position without being detected.

❏ Conclusion: A traversal of the tree reveals that the sequence of the label
values is not strictly monotonic increasing.
146

7.15 Correctness of the Modified Adjacency List Mode
F1 is contradicted by the conclusion, so the assumption A1 is false.

7.15.3 Proof of non-ambiguous reconstruction

❏ Assumption A2: There exist two different decrypted documents which
both are labeled correctly.

❏ Conclusion: A traversal of the tree reveals that the sequence of the label
values is not strictly monotonic increasing.

The fact F1 is contradicted by the conclusion, so the assumption A2 is false.
147

7 XML Pool Encryption
7.16 Editing documents after encryption
This section discusses problems which relate to inserted nodes in a public
document, which changed the document’s structure.
During the labeling procedure of the plaintext document, the public nodes in
the document are bound to specific label values. Structural changes in the
public document result in different label values for the public nodes.

7.16.1 Destroying the label mechanism
Figure 7-41 illustrates the problem when nodes are inserted into a pool-
encrypted element without further precautions.

The plaintext document contains the three nodes A, B and C. Node B is a con-
fidential node. Figure 7-41(a) shows the labeled plaintext document with

. The public document is shown in figure 7-41(b). In figure 7-41(c),
the node D has been inserted between the nodes A and C. After that step, the
document is to be decrypted and node B is to be restored. The document is
re-labeled as shown in figure 7-41(c). The nodes A and C do now have differ-
ent even label values. With the given labeling, it is impossible to restore the
node B. Figure 7-42 illustrates how the intervals of the position information

Figure 7-41: Different labeling after insertion of node

B 3764376412831283

AA 4000400010001000

CC 3000300020002000

AA 4000400010001000

CC 3000300020002000

B 3764376412831283

AA 6000600010001000

CC 4000400030003000

5000500020002000 DD

(a)

Plaintext
document

(b)

Encrypted
document

(c)

Encrypted document
with inserted node

??

S 1000=
148

7.16 Editing documents after encryption
are now comprised (for details on this representation, also see figure 7-7 on
page 96).

It can be seen in figure 7-42(b) that the re-generated label values of the nodes
D, B and C do overlap after insertion of node D.
Without further precautions, a pool-encrypted document can be rendered
undecryptable by editing and modification operations.

7.16.2 Enabling editing in public documents
To enable editing of public documents, the labeling procedure must be con-
trolled to identify editable regions as such. The label control mechanism is
based on adding three different attributes (mark types) to nodes in the tree
which confine the editable area. A minimum of two mark types is needed to
enable this mechanism; a third mark type is only introduced for performance
reasons.
Figure 7-43 on page 150 illustrates the basic marking process. Figure 7-43(a)
shows a simple plaintext document with four public nodes. These public
nodes have been labeled with even label values. The second and the third
node have been assigned the two marks "labeling=stop" and "labeling=stop"
(shown as white/grey and grey/white circles). The grey ‘end’ of the marked
nodes is at the side of the circle where the editable region borders on.
When labeling a marked tree, marked nodes are labeled with position infor-
mation. The full tree is traversed during the position labeling process. The
labeling process is temporarily disabled and re-enabled during tree traversal,
based on the type of an encountered mark.
The DACP defines where modifications are permitted in the public document
by assigning marks to the tree. For instance, nodes are added between the
marked nodes in the middle of the tree as shown in figure 7-43(b). The grey

Figure 7-42: Range mismatch

A

C

B

(a)
Labeling intervals before insertion

(b)
Labeling intervals after insertion

encrypted node

inserted node

1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000

A

D

C

B

149

7 XML Pool Encryption
areas identify regions in which nodes or subtrees can be added, removed and
modified without spoiling the labeling procedure.

The abstract description of the decision whether a given node is labeled with
position information or not is as follows:

❏ A node is labeled with position information, if the first marked node on
the ancestor-or-self axis has a labeling="start" mark or if no marked node
at all is found in the axis.

❏ A node is not labeled with position information, if the first marked node
on the ancestor axis has a labeling="stop" or a labeling="never" mark.

Both the labeling="start" and the labeling="stop" mark toggle the assignment
of labels to even nodes during a traversal. The labeling="never" mark states
that in the given subtree never ever a label will be assigned and that therefore
no traversal has to be performed. A subtree, which is e.g. for commentary
work in a public document, can be completely skipped during the traversal
algorithm. So the labeling="never" mark is merely a performance improvement
node. For being able to work, the labeling="start" and the labeling="stop"
marks are sufficient.
In order to have a defined starting value, the document node is always marked
labeling="start", so that labeling is enabled by default.

Figure 7-43: Editable region identification

30003000 60006000

30003000 80008000

20002000 70007000

50005000 60006000

10001000 80008000 10001000 1000010000

40004000 70007000

40004000 50005000

30003000 60006000

20002000 70007000

10001000 80008000

40004000 50005000

9000900020002000

labeling=stop

Labeled node

no label

labeling=start

labeling=never

no label

(a) (b) (c)
150

7.17 Schema validity and encryption
7.16.3 Trade-off between editability and structure awareness
Adding marks about editable regions in a pool-encrypted document partly
exposes information about the plaintext document’s structure to the user. The
statement that a particular part of the public document can be edited includes
the implicit fact that no encrypted nodes exist in the given part.
The edit marking scheme was introduced to give advice where new nodes can
be added or where existing nodes can be modified or removed without mak-
ing decryption impossible. The encrypted nodes cannot be decrypted and
placed back into an editable region. Therefore, in an editable region, no
encrypted nodes can exist.
As a result, increasing the size of editable regions exposes information about
the plaintext document’s structure to the users.

7.17 Schema validity and encryption
Documents which are valid with respect to a given schema are very fragile
when the document structure is modified. Changes in the structure can
destroy validity. Usually, a schema is written with a particular application in
mind, i.e. when creating the schema, use cases and permitted operations on
the data are already defined so that the schema can reflect these ideas in what
data structures are allowed.

W3C XML Signature and XML Encryption as well as XML pool encryption are
designed to secure arbitrary XML structures. Adding a digital signature
(<ds:Signature> elements) into a document or encryption portions of a doc-
ument by replacing the encrypted portion by an <xenc:EncryptedData> ele-
ment introduces significant changes to the document. If these structure
changes are performed without sufficient support in the schema definition,
then schema validity breaks. This applies to any applications which intro-
duces significant structural changes to a document.

W3C XML Encryption always must place an <xenc:EncryptedData> element
into a document, if portions of the document are encrypted. This element is
needed as an anchor for the decryption process as the user must be aware of
the place where the decrypted structure is to be written back.

The interesting fact about XML Pool Encryption is that it does not necessarily
introduce new namespaces into a document at multiple places. XML Pool
encryption bundles all encrypted content and key management information
from all over the document into one single place, the pool of encrypted
nodes.
151

7 XML Pool Encryption
152

8 Properties of XML Pool Encryption

8.1 Confidentiality of arbitrary nodes

1. It must be possible to encrypt arbitrary nodes from the plaintext docu-
ment.

2. The labeling procedure ensures that each node in the plaintext docu-
ment has an unambiguous label.

3. The labels represent unambiguously the position of the node in the
plaintext document.

4. Because of (3), each node can be restored by the node restoration pro-
cedure.

5. Because of (2) and (4), each node in the plaintext document can be
encrypted.

During the node encryption procedure as defined by this thesis, both the
interstitial label and the confidential node’s plaintext are encrypted
under the node key . So an encrypted node has the form

.

Note: To provide the confidentiality only for the node itself, it would be suffi-
cient to encrypt only confidential node’s plaintext so that the encrypted
node would be a tuple of the interstitial label and the encrypted plain-
text: . In that case, the interstitial label would be stored in the
clear, so that any user would know the positions of the encrypted nodes.

xj cj
kj ej

ej Ekj xj cj||()=

cj
ej xj
e x E c()||= xj
153

8 Properties of XML Pool Encryption
8.2 Confidentiality of the original structure
The labeling procedure requires the stepsize parameter to label the plaintext
document and the public document. The stepsize is the only parameter neces-
sary to fully label the public document. The stepsize parameter by itself does
not contain confidential information about the plaintext document’s struc-
ture.
All confidential information about the relation between the plaintext docu-
ment’s structure and the encrypted node is in the encrypted node’s XML
information and in its interstitial label. These items are encrypted, therefore
the original structure is kept confidential.

1. The structure of the plaintext document must be hidden.

2. The structure is stored in the label values of the public nodes and the
confidential nodes.

3. The label values of the public nodes can be restored with knowledge
of the stepsize.

4. Because of (2) and (3), all structure information is the public docu-
ment, the stepsize and the interstitial labels.

5. The public document is not confidential.

6. The stepsize is not confidential.

7. Because of (4), (5) and (6), all confidential structure information is in
the interstitial labels. Therefore, the interstitial labels must be confi-
dentiality protected.

8.3 Confidentiality of the total number of confi-
dential nodes

1. The total number of confidential nodes must be hidden.

2. Confidential nodes are stored as encrypted nodes.

3. The number of confidential nodes cannot be changed by the pool
encryption procedure.

4. Because of (2) and (3), the number of encrypted nodes must be
changed. This is done using the concept of dummy nodes.

5. The existence of dummy nodes must be kept secret.

6. Because of (5), only the DACP must be able to separate ‘real’
encrypted nodes from dummy nodes.
154

8.4 Plausible deniability
8.4 Plausible deniability
MICHAEL ROE introduces the term ‘plausible deniability’ in his Ph.D. thesis
[Roe97, pp. 48]. He remarks that if the system aims to provide this service, it
can be counterproductive to describe the plausible deniability property in the
system documentation or in the requirements document of a new system.
This is a problem because admitting that a particular system was designed
with plausible deniability in mind is a strong indicator that users of the system
use this feature, and that therefore, they are a priori guilty. Nevertheless, plau-
sible deniability is explicitly mentioned in this chapter, because it is a feature
which would be a ‘nice–to–have’.
Installing a system which provides plausible deniability always places the user
at risk that the adversary becomes aware of the existence of the system: users
which do use steganographic tools like steganographic file systems or stegan-
ographic multimedia software are always suspicious.
155

8 Properties of XML Pool Encryption
156

9 Conclusions

9.1 Summary
The present thesis describes existing security mechanisms for XML, including
W3C XML Encryption and XML Access Control. These mechanisms have been
classified based on their ability to protect arbitrary node sets. The lack of
W3C’s XML Encryption to encrypt arbitrary node sets led to the need for a fur-
ther mechanism. This mechanism has been designed and implemented as the
XML Pool Encryption system.
XML Pool Encryption solved the problem by combining different approaches
from database technology and the XML world. Multiple examples have shown
the internals of the algorithms. It has been proved that XML Pool Encryption
solves the given requirements.
The concept of labeling a tree and encrypting the labels resulted in a system
that can keep the full document structure confidential.

9.2 Future work
The current algorithms operate on an underlying DOM tree structure. These
DOM tree structures are in-memory structures in which pointers create links
between parent and child nodes. These pointers make the navigation on a
tree very easy.
For XML Pool Encryption, the node restoration procedure is complicated, as it
has to identify the child nodes and the next sibling of the decrypted node.
The lookup of parent nodes for a decrypted node is a costly operation, as it
has to iterate over a set of nodes.
The next step would be to create an implementation that completely drops
the DOM concept but stores all types of nodes in a single big set. Using such a
structure, the node restoration procedure would simply add the decrypted
node to the set. On the other hand, this approach would make tree navigation
more complex.
Another area of future research is the combination of XML Pool Encryption
with security mechanisms like XML Signature.
157

9 Conclusions
158

Annex: Implementation
The implementation section shows how XML Pool Encryption is implemented
in a prototype.

A.1 Implementation of XML Pool Encryption
The XML Pool Encryption system has been implemented using a Java library.
The figure A-1 illustrates the various classes of this library.

ExperimentalElementProxy: is the base class for all objects which
have an XML representation, i.e. which map to elements. For instance,
the EncryptedNode class has an XML representation.

EncryptedPool: The EncryptedPool is a simple container for one En-
cryptedNodes element and one KeyCollections element.

EncryptedNodes: The EncryptedNodes class is the representation for the

Figure A-1: Classes for XML Pool Encryption

ConfidentialitySpecification

EncryptedNodes

EncryptedNode

KeyCollections

User

KeyCollection

EncryptedPool

ExperimentalConstants

HelperNodeList

ExperimentalElementProxy

UserSpec

IntervalGenerator

ValueGenerator

TreeLabeler

NodeProcessor

Processor

Label
159

Annex: Implementation
pool of encrypted nodes and contains the individual EncryptedNode ele-
ments.

EncryptedNode: The EncryptedNode class models the encrypted node
objects, i.e. it can store the NodeID attribute and the ciphertext of the
encrypted node.

KeyCollections: The KeyCollections element contains multiple KeyCol-
lection elements.

KeyCollection: Each KeyCollection contains an UserID attribute to iden-
tify the intended user and a set of node keys with their respective NodeID
attributes.

The following example illustrates the relationship between EncryptedPool,
EncryptedNodes, EncryptedNode, KeyCollections and KeyCollection ele-
ments.

UserSpec: The UserSpec provides an Interface to retrieve a UserID from
an object.

User: The User class is a wrapper class which implements the UserSpec in-
terface and simply wraps a String as simple user identifier.

ExperimentalConstants: contains various constants like element
names.

HelperNodeList: An ordered set or Nodes; implements the
org.w3c.dom.NodeList interface.

ConfidentialitySpecification: The ConfidentialitySpecification allows
to define a mapping between UserSpec objects and Nodes. The Confi-

<EncryptedPool StepSizeBits="...">

 <EncryptedNodes>

 <EncryptedNode NodeID="...">+

 Base64-encoded ciphertext

 </EncryptedNode>

 </EncryptedNodes>

 <KeyCollections>?

 <KeyCollection UserID="...">+

 <!-- This is encrypted under the user’s key -->

 <xenc:CipherData>

 <NodeKey NodeID="...">+

 Base64-encoded node key

 </NodeKey>

 </xenc:CipherData>

 </KeyCollection>

 </KeyCollections>

</EncryptedPool>
160

A.2 Syntax of pool encryption
dentialitySpecification is required by the node selection procedure. The
DACP creates the ConfidentialitySpecification.

NodeProcessor: The NodeProcessor encrypts and decryptes single En-
cryptedNode objects. It is responsible for correct serialization and de-se-
rialization of a node’s plaintext.

Processor: The Processor encrypts and decrypts full documents. It takes
the plaintext document and the ConfidentialitySpecification to perform
this step and returns the public document and an EncryptedPool.

TreeLabeler: The TreeLabeler performs the labeling procedure and keeps
track of all public nodes and decrypted nodes. The TreeLabeler uses a
ValueGenerator to create label values.

ValueGenerator: The ValueGenerator is the representation of the TreeLa-
belers internal state. The ValueGenerator creates even label values and in-
terstitial sequences. The interstitial sequences are created by an
IntervalGenerator.

IntervalGenerator: The IntervalGenerator creates interstitial sequences.

A.2 Syntax of pool encryption
This section describes the XML syntax of the pool encryption system in a non-
formal way. The namespace bindings used in this section are listed in
table A-1.

All elements in pool encryption are in the namespace. The XML skeleton of
pool encryption is shown in figure A-2 (the lax syntax used here is as used in
section 2 of [ER02]).

prefix namespace URI

ds http://www.w3.org/2000/09/xmldsig#

penc http://www.xmlsecurity.org/experimental#

xenc http://www.w3.org/2001/04/xmlenc#

Table A-1: Namespace prefix bindings

<EncryptedPool StepSizeBits>

 <EncryptedNodes>

 <EncryptedNode NodeID />+

 </EncryptedNodes>

 <KeyCollections>

 <KeyCollection UserID>+

 <xenc:CipherData />

 </EncryptedKeyCollection>

Figure A-2: XML Skeleton of an EncryptedPool
161

Annex: Implementation
A.2.1 EncryptedPool
The <EncryptedPool> element is the container for both the pool of encrypted
nodes and the key pools for the different users. For each document, exactly
one <EncryptedPool> is permitted to be included. Multiple <EncryptedPool>
elements can be merged into a single pool by a union operation of the distinct
sets. The <EncryptedPool> element contains one <EncryptedNodes> element
which contains the set of the encrypted nodes and the
<KeyCollections> element which is the container for the encrypted key
pools for the individual users (see section 7.6 on page 113).

A.2.2 EncryptedNodes
The <penc:EncryptedNodes> element is the representation of the set and
contains the encrypted nodes . The StepSize attribute contains the step-
size which had been defined by the encryptor for the given document.

A.2.3 EncryptedNode
Each <penc:EncryptedNode> element contains a single encrypted node .
The individual nodes can be identified throught the Id attribute. This is neces-
sary to allow a node key in a <penc:KeyCollection> to refer to the encrypted
node it belongs to.
The ciphertext of the encrypted node is a base64-encoded string which is a
text child of the <penc:EncryptedNode> element. The format of the plaintext
is defined in section A.2.7 on page 163.

A.2.4 KeyCollections
The <penc:KeyCollections> element serves as container for (at least one)
<penc:EncryptedKeyCollection> element.

A.2.5 EncryptedKeyCollection
Each <penc:EncryptedKeyCollection> element contains the encrypted
pool of node keys. After successful decryption of the pool’s contents, the
node keys are available to the user. The key collection itself is encrypted using
W3C XML Encryption, therefore the <penc:EncryptedKeyCollection> con-
tains an <xenc:EncryptedData> element. The <xenc:EncryptedData> ele-
ment contains an encrypted <penc:KeyCollection> element. For details on
W3C XML Encryption, see the introduction in section 5.3 on page 69 and the
original specification [ER02].

 </KeyCollections>

</EncryptedPool>

Figure A-2: XML Skeleton of an EncryptedPool

E Ci

Puj uj

E
Ci

S

Ci

Puj
162

A.2 Syntax of pool encryption
A.2.6 KeyCollection
Decryption of the <penc:EncryptedKeyCollection>’s <xenc:Encrypted-

Data> element yields access to the <penc:KeyCollection> element.

The <penc:KeyCollection> contains <penc:NodeKey> elements which con-
tain the literal key value of the node key and a nodeRef attribute which
refers to the encrypted node in the <penc:EncryptedNode> element.
can be decrypted with the node key.

A.2.7 Serialization format for confidential nodes
The plaintext of a confidential node contains three general types of informa-
tion:

1. The node’s label, i.e. the left and right interstitial label values and

. The two values are base64-encoded integer values.

2. The node’s type, i.e. whether the following infoset belongs to e.g. an
element, a comment, a (sequence of) character information items ...

3. The node’s information set. The serialization format used here is the
same as defined by Canonical XML, so that the node(s) can simply be
re-parsed.

These three fields are separated by space values. An example of the plaintext
of an element could look like in example A-11.

The first base64-encoded value is a 128 bit integer representing the left inter-
stitial value with an even part of 0x03 (leading zeros) and an interstitial part of
0x66 0x10 0x9C 0xF1 0x86 0xA0 0x58 0x22. The second base64-encoded
value is a 128 bit with an even part of 0x03 and an interstitial part of 0xCD
0xD4 0x8B 0x87 0xDE 0x3C 0xE1 0x58. So the position of the node is (l,r)
=(62694782973784381474, 70171865109631918424) in decimal representa-
tion. The type information is set to "ELE" which means element content. The
parseable element contains a bar element with a foo prefix and the assiciated
namespace value.

<penc:KeyCollection>

 <penc:NodeKey nodeRef keyValue />+

</penc:KeyCollection>

Figure A-3: XML Skeleton of KeyCollection

AAAAAAAAAANmEJzxhqBYIg==·AAAAAAAAAAPN1IuH3jzhWA==·ELE·

<foo:bar·xmlns:foo="http://www.foo.com/#"·/>

Example A-1: Decrypted <penc:EncryptedNode>’s content

1. The single line of plaintext is decomposed into four lines for simplicity.

kei
ei ei

vl
vr
163

Annex: Implementation
A.3 The Apache XML Signature Implementation
The following chapter contains descriptions of the single components used
for the XML Signature library. If not otherwise stated by explicit package
names which refers to standard packages like java.util or org.apache.xpath, all
used pachage and class names have to be prefixed by org.apache.xml.security
to get the real pachage name:

❏ java.util.Comparator is a standard class called Comparator in the java.util.*
package

❏ utils.* refers to the package org.apache.xml.security.utils.*

❏ c14n.implementations.Canonicalizer20010315WithComments refers to the
org.apache.xml.security.c14n.implementations.Canonicalizer20010315WithC
omments class

A.3.1 org.apache.xml.security.* package

❏ Init: The Init class contains initialization functionality for the complete
library. This includes the following initializations:

❍ The global configuration is read from the classpath; this is done by
retrieving the resource/config.xml file from the JAR file

❍ The utils.PRNG singleton is initialized with a
java.security.SecureRandom object

❍ The log4j logging system is set up based on config.xml

❍ The internationalization is set up based on the locale from
config.xml
(see utils.I18n)

❍ The here() function as defined by the XML Signature recommen-
dation is registered in the Xalan XPath engine

❍ Register the available canonicalization algorithms
(see c14n.Canonicalizer)

❍ Register the available transformation algorithms
(see transforms.Transform)

❍ Register the JCE mappings
(see utils.JCEMapper)

Figure A-4: The org.apache.xml.security.* package

org.apache.xml.securityorg.apache.xml.security

InitInit
164

A.3 The Apache XML Signature Implementation
❍ Register the available signature and MAC algorithms
(see algorithms.SignatureAlgorithm)

❍ Register the available resource resolvers
(see utils.resolver.ResourceResolver)

❍ Register the available <KeyInfo> content handlers

❍ Register the available <KeyInfo> resolvers

❍ Define default prefixes for different namespaces

❍ Register the available encryption algorithms

A.3.2 org.apache.xml.security.algorithm.**.* Package

The algorithms and algorithms.implementations packages contain XML Signa-
ture related algorithm factories and the implementations of these algorithms.
The message digests, signature algorithms and HMACs are all used in the same
fashion: The JCEMapper is used to identify the Java JCE/JCA class which does
the real cryptographic work; an instance of this workhorse is included inside
the implementation class; additionally, it handles the construction/parsing
from and serialization to Elements.

❏ The JCEMapper class is a registry for mapping algorithm URIs to JCE/JCA
algorithm names. The Sun JCE/JCA architecture does not enforce that all
cryptographic service providers use the same algorithm identifiers for
the same algorithm. The JCEMapper is given an algorithm URI and returns
the name of the specific algorithm and the corresponding provider ID.

Figure A-5: The org.apache.xml.security.algorithm.**.* package

Algorithm

SignatureAlgorithmSpi

SignatureBaseRSA

IntegrityHmac

ElementProxy

SignatureBaseRSA.SignatureRSASHA1

SignatureBaseRSA.SignatureRSASHA256

SignatureBaseRSA.SignatureRSASHA384

SignatureBaseRSA.SignatureRSASHA512

SignatureBaseRSA.SignatureRSARIPEMD160

SignatureBaseRSA.SignatureRSAMD5

IntegrityHmac.IntegrityHmacSHA1

IntegrityHmac.IntegrityHmacSHA256

IntegrityHmac.IntegrityHmacSHA384

IntegrityHmac.IntegrityHmacSHA512

IntegrityHmac.IntegrityHmacRIPEMD160

IntegrityHmac.IntegrityHmacMD5

MessageDigestAlgorithm

SignatureAlgorithm

JCEMapper

SignatureDSA

algorithms algorithms.implementationsutils
165

Annex: Implementation
This includes some reflection magic to check which providers are avail-
able in the classpath and to register them as required.

❏ The abstract Algorithm class is the base class for all algorithms which
directly map to an Element in an XML instance and in which the used
algorithm is defined using a URI attribute.

❏ The MessageDigestAlgorithm class is the factory and proxy class which is
used for handling <ds:DigestMethod> elements.

❏ The SignatureAlgorithm class is the factory and proxy class which is used
for handling <ds:SignatureMethod> elements. It is a wrapper for
SignatureAlgorithmSpi objects.

❏ The SignatureAlgorithmSpi class is an abstract class which is extended by
the implementations of DSA, RSA and HMAC classes which reside in the
algorithms.implementations package.

❏ The SignatureDSA class implements the DSS/DSA (Digital Signature Stan-
dard/Digital Signature Algorithm), which is defined using a fixed hash
algorithm (SHA-1). No variants of this class exist.

❏ The abstract SignatureBaseRSA and IntegrityHmac classes do implement
the basic functionality for RSA based signatures and HMACs.

❍ The final implementation is done by the nested inner classes,
which are named by their corresponding message digest algo-
rithm: e.g., an RSA signature which utilizes the RIPE-MD160 hash
algorithm is implemented by the inner
SignatureBaseRSA$SignatureRSARIPEMD160 class.
166

A.3 The Apache XML Signature Implementation
A.3.3 org.apache.xml.security.c14n.**.* Package

The c14n and c14n.implementations packages include the core functionalities
for canonicalization, the c14n.helper package includes some helper classes:

❏ Canonicalizer is the factory and proxy class for the c14n algorithms. Addi-
tionally, it is the registry for available c14n algorithms.

❏ CanonicalizerSpi is the abstract base class which all canonicalizer imple-
mentations inherit.

❍ Canonicalizer20010315 implements the Canonical XML v1.0 recom-
mendation. It is defined abstract because the inherited classes

✰ Canonicalizer20010315WithComments and

✰ Canonicalizer20010315OmitComments define whether com-
ments are to be included or omitted.

❍ Canonicalizer20010315Excl implements the Exclusive Canonical
XML v1.0 recommendation. It is defined abstract because the
inherited classes

✰ Canonicalizer20010315ExclWithComments and

✰ Canonicalizer20010315ExclOmitComments define whether com-
ments are to be included or omitted.

❏ The CanonicalizationException is thrown if errors occur during canonical-
ization processing, e.g. relative namespaces in the input document.

❏ The InvalidCanonicalizerException is thrown if a non-registered canonical-
izer is to be instantiated in the Canonicalizer.

❏ In the c14n.helper package, the following classes are defined:

Figure A-6: The org.apache.xml.security.algorithm.**.* Package

org.w3c.dom.traversal.NodeFilterorg.w3c.dom.traversal.NodeFilter

java.util.Comparatorjava.util.Comparator

sun.misc.Comparesun.misc.Compare

Canonicalizer20010315CanonicalizerSpi

AlwaysAcceptNodeFilter

C14nNodeFilter

AttrCompare

C14nHelper

XMLSecurityException

Canonicalizer20010315OmitComments

Canonicalizer20010315WithComments

Canonicalizer20010315Excl Canonicalizer20010315ExclOmitComments

Canonicalizer20010315ExclWithComments

CanonicalizerException

InvalidCanonicalizerException

Canonicalizer

exceptions

c14n
c14n.implementations

c14n.helper
167

Annex: Implementation
❍ The AlwaysAcceptNodeFilter is an org.w3c.dom.traversal.NodeFilter
which always returns true.

❍ The C14nNodeFilter is an org.w3c.dom.traversal.NodeFilter which
returns true for all non-comment nodes. For comment nodes, it
returns an internal boolean value (include or omit comments).

❍ The AttrCompare defines a java.util.Comparator which is needed by
c14n for the ordering of attributes and namespaces.

❍ The C14nHelper class bundles some static utility functions needed
during c14n.

A.3.4 org.apache.xml.security.keys.(content).* package

The keys package (see figure A-7 on page 168) contains the KeyInfo object and
some utilities; the keys.content, keys.content.keyvalues and keys.content.x509
packages (also in figure A-7) contain the content model for the different child
elements of the <ds:KeyInfo> element:

❏ The KeyUtils class contains only a few static functions for debugging.

❏ The KeyInfo class models the <ds:KeyInfo> element. This includes a fac-
tory for <ds:KeyInfo> elements, easy access to all child elements and
most important, functionality to use resolvers from the keys.resolver
package to retrieve public keys and certificates from a <ds:KeyInfo>.

Figure A-7: The org.apache.xml.security.keys.(content).* package

KeyInfoContentKeyInfoContent

XMLX509DataContentXMLX509DataContent

KeyValueContentKeyValueContent

SignatureElementProxy

SignatureElementProxy

SignatureElementProxy

SignatureElementProxy

KeyName

KeyValue

MgmtData

PGPData

RetrievalMethod

SPKIData

SPKIData

X509Data

XMLX509Certificate

XMLX509SubjectName

XMLX509IssuerSerial

XMLX509SKI

XMLX509CRL

RSAKeyValue

DSAKeyValue

KeyInfo

KeyUtils

ContentHandlerAlreadyRegisteredExceptionXMLSecurityException

keysutils

exceptions

keys.contentutils

keys.content.x509utils

keys.content.keyvaluesutils
168

A.3 The Apache XML Signature Implementation
This enables to user to use simple statements like keyInfo.getPublicKey()
to fetch a java.security.PublicKey from a KeyInfo object.

❏ The classes in the keys.content, keys.content.keyvalues and
keys.content.x509 packages map directly onto the corresponding ele-
ments from the XML Signature specification. All these classes provide
methods for easily accessing the contents of these elements.

❏ The interfaces KeyInfoContent, KeyValueContent and XMLX509DataContent
are used for ‘tagging’ the elements in the given packages. This tagging
specifies which element are allowed as children of <ds:KeyInfo>,
<ds:KeyValue> and <ds:X509Data> elements. These interfaces do not
introduce any methods.

❏ The ContentHandlerAlreadyRegisteredException is thrown if the user regis-
ters a key resolver, which has already been assigned.

A.3.5 org.apache.xml.security.keys.keyresolver.* package

The key resolvers from the keys.keyresolver packare (see figure A-8 on page
169) are objects which extract public keys and certificates from elements
(well, not from the elements but from their corresponding KeyInfoContent,
KeyValueContent or XMLX509DataContent object):

❏ The KeyResolver class is the registry and factory to create arbitrary key
resolvers and acts as a proxy for the underlying KeyResolverSpi.
The KeyResolver class is given a <ds:KeyInfo> element and optionally
some StorageResolvers. After this initialization, the user can simply ask
for a public key or certificate. This query is delegated to all registered
key resolver implementations, which respond whether they can resolve
a given element to a public key or certificate.

❏ The KeyResolverException is thrown is an error occured during key
resolving by the implementations.

Figure A-8: The org.apache.xml.security.keys.keyresolver.* package

KeyResolverSpi

XMLSecurityException

DSAKeyValueResolver

RSAKeyValueResolver

RetrievalMethodResolver

X509CertificateResolver

X509IssuerSerialResolver

X509SubjectNameResolver

X509SKIResolver

KeyResolverException

KeyResolver

exceptions

keys.keyresolver keys.keyresolver.implementations
169

Annex: Implementation
❏ The KeyResolverSpi is the abstract base class to the different key resolver
implementations. The different implementations are:

❍ The DSAKeyValueResolver can extract DSA public keys from
<ds:DSAKeyValue> elements.

❍ The RSAKeyValueResolver can extract RSA public keys from
<ds:RSAKeyValue> elements.

❍ The RetrievalMethodResolver can retrieve public keys and certifi-
cates from other locations. The location is specified using the
<ds:RetrievalMethod> element which points to the location. This
includes the handling of raw (binary) X.509 certificate which are
not encapsulated in an XML structure. If the retrieval process
encounters an element which the RetrievalMethodResolver cannot
handle itself, resolving of the extracted element is delegated back
to the KeyResolver mechanism.

❍ The X509CertificateResolver can extract public keys and X.509 cer-
tificates from <ds:X509Certificate> elements which carry
base64 encoded certificates.

❍ The X509IssuerSerialResolver extracts the issuer distinguished
name/serial number pair from a <ds:X509IssuerSerial> element
and iterates through a collection of certificates. If it finds the
matching certificate, it returns the public key or the certificate
itself.

❍ The collection of certificates is modeled through a StorageResolver
(discussed below).

❍ The X509SubjectNameResolver extracts the subjects distinguished
name from a <ds:X509SubjectName> element and iterates through
a collection of certificates. If it finds the matching certificate, it
returns the public key or the certificate itself.

❍ The X509SKIResolver extracts the subject key indentifier from an
<ds:X509SKI> element and iterates through a collection of certifi-
cates. If it finds the matching certificate, it returns the public key
or the certificate itself.
170

A.3 The Apache XML Signature Implementation
A.3.6 org.apache.xml.security.keys.storage.* package

Each system has different ways on how certificates are organized. Certificates
can be stored in e.g. a LDAP directory, as plain, binary files in a directory on
the local file system or in a KeyStore, which is the Java way to collect crypto-
graphic keys and certificates. Some of the key resolvers need access to the
certificates in order to match a snippet of information like a SKI or an Issu-
erSerial against the certificates to find the correct one.

❏ The StorageResolver is the interface to the certificate collections. The
simplest way to access such a collection of certificates is an Iterator. The
StorageResolver provides an interface to iterate over such a collection.

❏ The StorageResolverException is thrown if something goes wrong during
the iteration process.

❏ The StorageResolverSpi is the abstract service provider interface class
which all implementations must extend.
The library ships with the following implementations:

❍ The KeyStoreResolver iterates completely over the certificates con-
tained in a given KeyStore.

❍ The CertsInFilesystemDirectoryResolver iterates over the files in a
given directory in the file system and makes all binary certificates
available to the caller. This is needed for unit testing against some
test vectors.

❍ The SingleCertificateResolver makes a single Certificate available
through the StorageResolver interface. This enables the user to sup-
ply multiple certificates (it's possible to add multiple
StorageResolverSpi implementations to the StorageResolver in order
to iterate over all of them).

Figure A-9: The org.apache.xml.security.keys.storage.* package

StorageResolverSpi

XMLSecurityException

CertsInFilesystemDirectoryResolver

KeyStoreResolver

SingleCertificateResolverStorageResolverException

StorageResolver

exceptions

keys.storage keys.storage.implementations
171

Annex: Implementation
A.3.7 org.apache.xml.security.signature.* package

The signature package contains the objects which model the XML Signature
recommendation. All (but the XMLSignatureInput and the exceptions) extend
the SignatureElementProxy, cause they implement elements from the signature
namespace.

❏ The XMLSignature class handles <ds:Signature> elements. It's the main
object needed for creating and verifying arbitrary XML Signatures. It pro-
vides proxy methods for invoking methods on included objects, e.g. it
provides the addDocument() method for adding References to the under-
lying SignedInfo.

❏ The Manifest class handles <ds:Manifest> elements. It includes all func-
tionality needed for reference validation.

❏ The SignedInfo class handles <ds:SignedInfo> elements and extends
the Manifest. It adds canonicalization and signing functionality to the
Manifest.

❏ The Reference class handles <ds:Reference> elements. This class
includes methods for de-referencing contents from given URIs, applying
transforms to the de-referenced contents and calculating the corre-
sponding message digests. The de-referencing of URIs is done by a col-
lection of ResourceResolvers. These ResourceResolvers are maintained by
the Manifest or SignedInfo which ‘owns’ the Reference.

❏ The ObjectContainer class handles <ds:Object> elements1.

Figure A-10: The org.apache.xml.security.keys.signature.* package

1. It has been called ObjectContainer instead of Object to avoid name clashes with
the lava.lang.Object object

exceptionsexceptions

signaturesignatureutilsutils

XMLSecurityExceptionXMLSecurityException

SignatureElementProxySignatureElementProxy XMLSignatureXMLSignature

ManifestManifest

ReferenceReference

ObjectContainerObjectContainer

SignaturePropertiesSignatureProperties

SignaturePropertySignatureProperty

XMLSignatureExceptionXMLSignatureException

SignedInfoSignedInfo

XMLSignatureInputXMLSignatureInput

InvalidSignatureValueExceptionInvalidSignatureValueException

MissingResourceFailureExceptionMissingResourceFailureException

ReferenceNotInitializedReferenceNotInitialized

InvalidDigestValueExceptionInvalidDigestValueException
172

A.3 The Apache XML Signature Implementation
❏ The SignatureProperties class handles <ds:SignatureProperties> ele-
ments.

❏ The SignatureProperty class handles <ds:SignatureProperty> elements.

❏ The XMLSignatureException is the base class for all XML Signature related
exceptions.

❏ The most complex class in the signature package is the XMLSignature-
Input class. This class represents the data which is de-referenced by the
ResourceResolvers and which is then used as input and output of trans-
forms. According to the XML Signature recommendation, the data type
of the result of de-referencing a URI can be either an octet stream or an
XPath node-set. This duality is represented by the XMLSignatureInput: the
class allows easy and transparent conversion from octet streams to
XPath node sets and vice versa, based on what the consumer (the
TransformSpi) of such an object requires as input.

A.3.8 org.apache.xml.security.transforms.* package

The transform package contains the objects which model the XML Signature
related transformations:

❏ The Transforms class handles <ds:Transforms> elements.

Figure A-11: The org.apache.xml.security.transforms.* package

SignatureElementProxy

TransformSpi

XPathContainer

ElementProxy XPath2FilterContainer

TransformBase64Decode

TransformC14N

TransformC14NWithComments

TransformEnvelopedSignature

TransformXPath2Filter

TransformXPath

TransformXSLT

FuncHere

FuncHereContext

XMLSecurityException

org.apache.xpath.functions.Function

org.apache.xpath.XPathContext

TransformationException

InvalidTransformException

Transforms

Transform

utils

SignatureElementProxy

utils

exceptions

transforms transforms.implementations

transforms.params
173

Annex: Implementation
❏ The Transform class handles <ds:Transform> elements. Additionally, it's a
factory and proxy for TransformSpi implementations.

❏ The TransformationException is thrown in case of an error during the
transformation process.

❏ The InvalidTransformException is thrown if the Transform factory is
requested to instantiate a non-registered or otherwise not available trans-
form.

❏ The TransformSpi class is an abstract class which is extended by the trans-
formation implementations.

The transform.implementations package contains the individual implementa-
tions of the transformations:

❏ The TransformBase64Decode transform implements "http://www.w3.org/
2000/09/xmldsig#base64" which is decoding of base64 encoded data to
an octet stream.

❏ The TransformC14N transform implements "http://www.w3.org/TR/
2001/REC-xml-c14n-20010315" which is canonicalization (omitting com-
ments) according to [Boy01].

❏ The TransformC14NWithComments transform implements "http://
www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments"
which is canonicalization (including comments) according to [Boy01].

❏ The TransformXPath transform implements "http://www.w3.org/TR/
1999/REC-xpath-19991116" which is XPath based nodeset filtering.

❍ The transforms.params.XPathContainer class is needed for initializing
this transform.

❏ The TransformXPath2Filter transform implements [BHR02] which is a
new XPath filter based on subtree operations.

❍ The transforms.params.XPath2FilterContainer class is needed for ini-
tializing this transform.

❏ The TransformXSLT transform implements XSL transformations. This is
transformation of one XML tree structure into another XML tree struc-
ture based on an eXtensible Stylesheet Language style sheet.

❏ The FuncHere class implements the here() function as defined by the
XML Signature recommendation. It extends the
org.apache.xpath.functions.Function class so that it can be used in Xalan.

❏ The FuncHereContext is based on the org.apache.xpath.XPathContext with
the difference that it's constructors can be supplied a DTMManager. The
re-use is necessary so that subsequent XPath transforms can use the

same DTMManager for evaluating XPath expressions1.
174

A.3 The Apache XML Signature Implementation
A.3.9 org.apache.xml.security.utils.* package

The utils package contains the various utility classes:

❏ The XMLUtils class offers static XML-related utility methods. This is
mainly needed for functionality which is not offered by the DOM stan-
dard.

❏ The JavaUtils class offers a few static Java-related utility methods.

❏ The PRNG class is a singleton implementation which encapsulates a
java.lang.SecureRandom object. Creation of such objects is a costly pro-
cess, and this mechanism allows various classes in the library to use an
existing PRNG.

❏ The HexDump class converts Strings containing hexadecimal digits into
octet arrays and vice versa.

❏ The Base64 class converts Strings containing radix-64 (base64) encoded
data into octet arrays and vice versa.

❏ The Constants class is a pool for various constants which are used
throughout the library.

❏ The Version class exports the current version of the library (and also ver-
sion numbers for Xerces and Xalan).

❏ The I18n class is used for internationalization of the software package.
Error and exception messages are converted by this class.

1. The here() function is utilized through use of the utils.XPathFuncHereAPI

Figure A-12: The org.apache.xml.security.utils.* package

SignatureElementProxy

EncryptionElementProxy

ElementProxy

XMLUtils

JavaUtils

CachedXPathFuncHereAPI

IgnoreAllErrorHandler

Constants

I18n RFC2253Parser IdResolver

HelperNodeList

HexDump

Base64

Version

PRNG

utils
175

Annex: Implementation
❏ The RFC2253Parser is a utility class for converting UTF-8 data into
RFC2253 compliant strings and vice versa.

❏ The HelperNodeList class implements the NodeList interface and is able to
be filled with own nodes, i.e. it provides an appendChild(Node) method.

❏ The IgnoreAllErrorHandler class is an ErrorHandler which silently discards
all occuring SAXParseExceptions which are maybe thrown during a pars-
ing run.

❏ The CachedXPathFuncHereAPI class is analogous to the
org.apache.xpath.CachedXPathAPI with a single difference: the String con-
taining the XPath which is to be evaluated must be supplied in a Text or
Attribute Node. This enables the class to handle the here() function
appropriately.

❏ The IdResolver class helps for resolving ID names to the appropriate ele-
ments. During building a new DOM tree from scratch, the Document
object does not support the Document.getElementById(String ID)
method; IDs can only be resolved by the Document if the underlying
structure has been read by a validating parser, so this doesn't help dur-
ing the construction of the DOM and therefore during the signing pro-

cess1. The IdResolver utilizes internal knowledge to resolve particular ID
type attributes: e.g. all "Id" attributes with their owner element in the
XML Signature namespace are of type ID. So the IdResolver subsequently
queries methods which are customized for specific XML Schemas so that
they know (even without validating parsing), if their respective ele-
ments have the ID in question. If a match is found, the appropriate ele-
ment is returned. Additionally, the ID is registered in the underlying
Document so that subsequent calls are directly handled by the Document
itself.

❏ The ElementProxy class is the abstract base class for all types of classes
which directly map to a particular element. These classes have the prop-
erty that they can be constructed from an existing element (needed for
creating the class from an existing structure, e.g. during signature valida-
tion) or they can be constructed from a Document (the factory for creat-
ing the real DOM objects) and some additional parameters which
contain the information.

❏ The SignatureElementProxy class is the abstract base class for all classes
which model Elements from the XML Signature namespace.

❏ The EncryptionElementProxy class is the abstract base class for all classes
which model Elements from the XML Encryption namespace.

1. A summary on ID-related issues can be found online in [Dodds01]
176

A.3 The Apache XML Signature Implementation
A.3.10 org.apache.xml.security.utils.resolver.**.* package

The utils.resolvers package contains a framework for resolving arbitrary infor-
mation which is normally identified by a given URI. This is usually needed for
de-referencing contents from a ds:Reference/@URI attribute or an
xenc:CipherReference/@URI attribute.

❏ The ResourceResolver is the interface to the different resolver implemen-
tations.

❏ The ResourceResolverException is thrown if something goes wrong during
fetching the referenced contents.

❏ The ResourceResolverSpi is the abstract service provider interface class
which all implementations must extend.

The utils.resolver.implementations package contains the individual implementa-
tions of the resource resolvers:

❏ The ResolverFragment resolves same-document URIs without comments.
The @URI="" and @URI="#someId" are handled by this resolver. The
@URI="" refers to all nodes in the document except the comment nodes,
the @URI="#someId" refers to the Element with an ID type attribute with
value "someId" and all it's descendants (without comments).

❏ The ResolverXPointer is the “with comments” version of the
ResolverFragment Resolver. It handles the same-document URIs with
comments. The @URI="#xpointer(/)" and
@URI="#xpointer(id('someId'))" are handled by this resolver. The
@URI="#xpointer(/)" refers to all nodes in the document including the
comment nodes, the @URI="#xpointer(id('someId'))" refers to the
Element with an ID type attribute with value "someId" and all it's descen-
dants (including the comments).

❏ The ResolverDirectHTTP is capable to de-reference contents which are
available via a HTTP connection. It can be configured to use an existing
HTTP Proxy and can do proxy and server authentication of the client.

Figure A-13: The org.apache.xml.security.utils.resolver.**.* package

ResourceResolverSpi

XMLSecurityException

ResourceResolver

ResourceResolverException

ResolverAnonymous

ResolverDirectHTTP

ResolverFragment

ResolverLocalFilesystem

ResolverXPointer

exceptions

utils.resolver utils.resolver.implementations
177

Annex: Implementation
❏ The ResolverLocalFilesystem provides access to files which reside in the
local file system.

❏ The ResolverAnonymous is an exceptional resolver, because it resolves
non-existing @URI attributes: The XML Signature recommendation
defines the ds:Reference/@URI attribute as optional and allows that one
single Reference in a SignedInfo is without an @URI attribute. This can be
used if the Signature is bound to a pre-defined piece of information
which either cannot or should not be identified using the URI. The
application has to initialize the ResolverAnonymous with an InputStream
so that the de-referenced contents can be fetched from that given
InputStream.

A.3.11 exceptions of the org.apache.xml.security hierarchy

Figure A-14 gives an overview to the exceptions in the complete library.

Figure A-14: The exceptions of the org.apache.xml.security hierarchy

CanonicalizationException

InvalidCanonicalizerException

ContentHandlerAlreadyRegisteredException

InvalidKeyResolverException

KeyResolverException

StorageResolverException

InvalidDigestValueException

InvalidSignatureValueException

MissingResourceFailureException

ReferenceNotInitializedException

XMLSignatureException

TransformationException

InvalidTransformException

java.lang.Exception XMLSecurityException

Base64DecodingException

AlgorithmAlreadyRegisteredException

exceptions

keys

c14n

keys.keyresolver

keys.storage

signature

transforms
178

References
And01 ROSS ANDERSON, “Security Engineering: A Guide to Build-

ing Sependable Distributed Systems”, John Wiley & Sons,
2001

ANS98 ROSS ANDERSON, ROGER NEEDHAM and ADI SHAMIR, “The Ste-
ganographic File System”, Information Hiding 1998,
LNCS 1525, pp. 73-82, 1998
http://www.cl.cam.ac.uk/ftp/users/rja14/
sfs3.ps.gz
http://link.springer.de/link/service/series/
0558/papers/1525/15250073.pdf

BBC+ E. BERTINO, M. BRAUN, S. CASTANO, E. FERRARI and M. MES-
ITI, “Author-X: a Java-Based System for XML Data Protec-
tion”

BCF01 ELISA BERTINO, SILVANA CASTANO and ELENA FERRARI, “Secur-
ing XML Documents with Author-X”, IEEE Internet Com-
puting, May 2001, pp. 21-31

BCFM00 ELISA BERTINO, SILVANA CASTANO, ELENA FERRARI and MARCO
MESITI, “Specifying and Enforcing Access Control Policies
for XML Document Sources”, World Wide Web Journal
(Baltzer Publ.), Vol.3, No.3, 2000.

BCFM99 ELISA BERTINO, SILVANA CASTANO, ELENA FERRARI and MARCO
MESITI, “Controlled Access and Dissemination of XML
Documents”, ACM CIKM'99 2nd Workshop on Web Infor-
mation and Data Management (WIDM'99), November
1999

BER02 W3C, JOHN BOYER, DONALD E. EASTLAKE and JOSEPH REAGLE,
“Exclusive XML Canonicalization, Version 1.0”,
W3C Recommendation 18 July 2002,
http://www.w3.org/TR/2002/REC-xml-exc-c14n-
20020718/

BFM98 T. BERNERS-LEE, R. FIELDING and L. MASINTER, “RFC 2396 -
Uniform Resource Identifiers (URI): Generic Syntax”,
August 1998
http://www.ietf.org/rfc/rfc2396.txt

BHL99 W3C, TIM BRAY, DAVE HOLLANDER and ANDREW LAYMAN (Edi-
toren), “Namespaces in XML”, Januar 1999,
http://www.w3.org/TR/1999/REC-xml-names-
19990114
179

http://www.cl.cam.ac.uk/ftp/users/rja14/sfs3.ps.gz
http://link.springer.de/link/service/series/0558/papers/1525/15250073.pdf
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/1999/REC-xml-names-19990114

BHLT02 W3C, TIM BRAY, DAVE HOLLANDER, ANDREW LAYMAN and
RICHARD TOBIN (Editors), “Namespaces in XML 1.1”,
Working Draft, April 2002,
http://www.w3.org/TR/2002/WD-xml-names11-
20020403/

BHR02 W3C, JOHN BOYER, MERLIN HUGHES and JOSEPH REAGLE,
“XML-Signature XPath Filter 2.0”, W3C Recommendation
8 November 2002,
http://www.w3.org/TR/2002/REC-xmldsig-
filter2-20021108/

Bos99 W3C, BERT BOS, “XML in 10 points”, March 1999,
http://www.w3.org/XML/1999/XML-in-10-points

Boy01 W3C, JOHN BOYER (Editor), “Canonical XML Version 1.0”,
W3C Recommendation 15 March 2001
http://www.w3.org/TR/2001/REC-xml-c14n-
20010315

BPMM+00 W3C, TIM BRAY, JEAN PAOLI, C. M. SPERBERG-MCQUEEN and
EVE MALER (Editors), “Extensible Markup Language
(XML) 1.0 (Second Edition)”,
W3C Recommendation 6 October 2000,
http://www.w3.org/TR/2000/REC-xml-20001006

Bro02 DAVID BROWNELL, “SAX2”, O’Reilly, January 2002, ISBN 0-
596-00237-8
http://www.oreilly.com/catalog/sax2/
http://sax.sourceforge.net/?selected=event

BSI97 BUNDESAMT FÜR SICHERHEIT IN DER INFORMATIONSTECHNIK,
„Mit Sicherheit in die Informationsgesellschaft“, SecuMe-
dia Verlag Ingelheim, 1997, ISBN 3-922746-29-2

CDFT98 J. CALLAS, L. DONNERHACKE, H. FINNEY and R. THAYER,
“OpenPGP Message Format”, 1998,
http://www.ietf.org/rfc/rfc2440.txt

Cel00 JOE CELKO, “Trees in SQL”, Oktober 2000
http://www.intelligententerprise.com/001020/
celko1_1.shtml

Clark99 JAMES CLARK, “XSL Transformations (XSLT), Version 1.0”,
W3C Recommendation 16 November 1999,
http://www.w3.org/TR/1999/REC-xslt-19991116

ClDe99 W3C, JAMES CLARK and STEVE DEROSE, “XML Path Lan-
guage (XPath) Version 1.0”,
W3C Recommendation 16 November 1999,
http://www.w3.org/TR/1999/REC-xpath-19991116
180

http://www.w3.org/TR/2002/WD-xml-names11-20020403/
http://www.w3.org/TR/2002/REC-xmldsig-filter2-20021108/
http://www.w3.org/XML/1999/XML-in-10-points
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.oreilly.com/catalog/sax2/
http://www.oreilly.com/catalog/sax2/
http://www.oreilly.com/catalog/sax2/
http://sax.sourceforge.net/?selected=event
http://www.ietf.org/rfc/rfc2440.txt
http://www.intelligententerprise.com/001020/celko1_1.shtml
http://www.w3.org/TR/1999/REC-xpath-19991116

CoTo01 W3C, JOHN COWAN and RICHARD TOBIN (Editors), “XML
Information Set”,
W3C Recommendation 24 October 2001,
http://www.w3.org/TR/2001/REC-xml-infoset-
20011024

DiAl99 T. DIERKS and C. ALLEN, “The TLS Protocol Version 1.0”,
January 1999,
http://www.ietf.org/rfc/rfc2246.txt

Dodds01 LEIGH DODDS, “Identity Crisis”, November 2001,
http://www.xml.com/pub/a/2001/11/07/id.html

DVPS00 E. DAMIANI, S. DE CAPITANI DI VIMERCATE, S. PARABOSCHI and
P. SAMARATI, “Design and Implementation of an Access
Control Processor for XML Documents”, Proceedings of
Ninth International World Wide Web Conference, Amster-
dam, May 2000
http://www9.org/w9cdrom/419/419.html

DVPS01 E. DAMIANI, S. DE CAPITANI DI VIMERCATI, S. PARABOSCHI and
P. SAMARATI, “Controlling Access to XML Documents”,
IEEE Internet Computing, November 2001, pp. 18-28

DVPS02 E. DAMIANI, S. DE CAPITANI DI VIMERCATE, S. PARABOSCHI and
P. SAMARATI, “Securing SOAP e-Services”, International
Journal of Information Security (IJIS), 2002

EFLR+99 CARL M. ELLISON, BILL FRANTZ, BUTLER LAMPSON, RON RIVEST,
BRIAN THOMAS and TATU YLONEN, “SPKI Certificate The-
ory”, Request for Comments RFC 2693, 1999
http://www.ietf.org/rfc/rfc2693.txt

ERS02 W3C, DONALD EASTLAKE, JOSEPH REAGLE and DAVID SOLO
(Editors), MARK BARTEL, JOHN BOYER, BARB FOX, BRIAN
LAMACCHIA and ED SIMON, “XML-Signature Syntax and
Processing”, W3C Recommendation 12. February 2002,
http://www.w3.org/TR/2002/REC-xmldsig-core-
20020212/

ER02 W3C, DONALD EASTLAKE AND JOSEPH REAGLE (Editors),
TAKESHI IMAMURA, BLAIR DILLAWAY and ED SIMON, “XML
Encryption Syntax and Processing”, W3C Recommenda-
tion, 10. December 2002,
http://www.w3.org/TR/2002/REC-xmlenc-core-
20021210/
181

http://www.w3.org/TR/2001/REC-xml-infoset-20011024
http://www.ietf.org/rfc/rfc2246.txt
http://www.xml.com/pub/a/2001/11/07/id.html
http://www9.org/w9cdrom/419/419.html
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/

FIPS180-1 U.S. DEPARTMENT OF COMMERCE, NATIONAL INSTITUTE OF
STANDARDS AND TECHNOLOGY, “FIPS PUB 180-1: Secure
Hash Standard (SHS)”, April 1995

FIPS186-2 U.S. DEPARTMENT OF COMMERCE, NATIONAL INSTITUTE OF
STANDARDS AND TECHNOLOGY, “FIPS PUB 186-2: Digital Sig-
nature Standard (DSS)”,
http://csrc.nist.gov/publications/fips/
fips186-2/fips186-2.pdf

FrBo96 N. FREED and N. BORENSTEIN, “Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Mes-
sage Bodies”, RFC 2045, November 1996
http://www.ietf.org/rfc/rfc2045.txt

FraTs02 BARBARA FRASER and THEODORE TS'O, “Description of the IP
Security Working Group”, February 2002,
http://www.ietf.org/html.charters/ipsec-
charter.html

GeRu99 CHRISTIAN GEUER-POLLMANN and CHRISTOPH RULAND, „Das
Simple Signature Protocol für WWW-Sicherheit“, pp. 461-
465, in:
BUNDESAMT FÜR SICHERHEIT IN DER INFORMATIONSTECHNIK,
„IT-Sicherheit ohne Grenzen?“, SecuMedia Verlag Ingel-
heim, 1999, ISBN 3-922746-32-2

Geu99 CHRISTIAN GEUER-POLLMANN, „Das Simple Signature Proto-
col für WWW-Sicherheit“, pp. 67-80, in:
RAINER BAUMGART, KAI RANNENBERG and GERHARD WECK,
„IT-Sicherheit an der Schwelle des neuen Jahrtausends“,
Verlag Vieweg, Braunschweig, 1999, ISBN 3-528-05728-9

Geu02 CHRISTIAN GEUER-POLLMANN, “XML Pool Encryption”, Pro-
ceedings of the 2002 ACM Workshop on XML Security,
Fairfax, VA, U.S.A, 2002
http://doi.acm.org/10.1145/764792.764794

GoMo02 SIMON GODIK and TIM MOSES, “XACML 1.0 - The OASIS
extensible Access Control Markup Language (XACML)”,
Committee Specifications, 7 November 2002,
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
repository/cs-xacml-core-01.doc

GRSM00 CHRISTIAN GEUER-POLLMANN, CHRISTOPH RULAND, PANAGIOTIS
SKLAVOS AND MARINA MOULA, “Digital Signatures for Web
Contents”, pp. 218-224, in
BRIAN STANFORT-SMITH and PAUL T. KIDD, “E-Business: Key
Issues, Applications and Technologies”, Proceedings of
e2000, IOS Press, 2000, ISBN 1-58603-089-2
182

http://www.ietf.org/html.charters/ipsec-charter.html
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/repository/cs-xacml-core-01.doc

GroVei01 PAUL GROSSO and DANIEL VEILLARD, “XML Fragment Inter-
change”, W3C Candidate Recommendation, 12 February
2001
http://www.w3.org/TR/2001/CR-xml-fragment-
20010212

GrPo98 RÜDIGER GRIMM and ULRICH PORDESCH, „Wie sicher ist die
digitale Signatur“, Spektrum der Wissenschaft: „Dossier --
Die Welt im Internet“, 1998, pp 62-62

GrWä99 RÜDIGER GRIMM and JÜRGEN WÄSCH, „XML und IT-Sicher-
heit“, pp. 141-162, in:
RAINER BAUMGART, KAI RANNENBERG and GERHARD WECK,
„IT-Sicherheit an der Schwelle des neuen Jahrtausends“,
Verlag Vieweg, Braunschweig, 1999, ISBN 3-528-05728-9

Hal02 PHILLIP HALLAM-BAKER, “XML Key Management Specifica-
tion (XKMS 2.0)”, W3C Editors Copy, October 2002
http://www.w3c.org/2001/XKMS/Drafts/
XKMS20021017/xkms-part-1.html

HiVa01 MICHAEL HITCHENS and VIJAY VARADHARAJAN, “RBAC for
XML Document Stores”, pp. 131-143, in
S. QUING, T. OKAMOTO and J. ZHOU (Editoren), ICICS 2001,
LNCS 2229, Springer-Verlag, Heiderlberg, 2001

Hous99 RUSS HOUSLEY, “Cryptographic Message Syntax”, June
1999, Request for Comments: 2630
http://www.ietf.org/rfc/rfc2630.txt

IEEE 754-1985 ANSI/IEEE STD 754-1985, “Standard for Binary Floating-
Point Arithmetic”, 1985, reaffirmed1990
http://grouper.ieee.org/groups/754/

ISO8879 ISO 8879, “Information processing - Text and Office Sys-
tems - Standard Generalized Markup Language
(SGML)”, 1986

ISO/IEC 9798-1 ISO/IEC 9798-1, “Information technology — Security
techniques — Entity authentication — Part 1: General”,
1997
183

http://www.w3.org/TR/2001/CR-xml-fragment-20010212
http://www.ietf.org/rfc/rfc2630.txt

ISO/IEC 10118-3 ISO/IEC 10118-3, “Information technology - Security
techniques — Hash-functions — Part 3: Dedicated hash-
functions”, International Organization for Standardization,
Geneva, Switzerland, 2003.

ISO/IEC 11770 ISO/IEC 11770, “Information technology — Security
techniques — Key management”

ISO/IEC 18033-1 ISO/IEC 18033-1, “Information technology — Security
techniques — Encryption algorithms — Part 1: Gen-
eral”, 2002

ITU-T X.680 | ISO
8824

ITU-T Rec. X.680 | ISO/IEC 8824-1, “Information technol-
ogy — Abstract Syntax Notation One (ASN.1): Specifica-
tion of basic notation”, 2002

ITU-T X.800 | ISO
7498-2

ITU-T Rec. X.800 | ISO 7498-2, “Information processing
systems — Open Systems Interconnection — Basic Refer-
ence Model — Part 2: Security architecture”, 1991

ITU-T X.810 | ISO
10181-1

ITU-T Rec X.810 | ISO/IEC 10181-1, “Information tech-
nology — Security Frameworks in Open Systems: Over-
view”, 1996

ITU-T X.812 | ISO
10181-3

ITU-T Rec X.812 | ISO/IEC 10181-3, “Information tech-
nology — Security Frameworks in Open Systems: Access
control framework”, 1996

ITU-T X.813 | ISO
10181-4

ITU-T Rec X.813 | ISO/IEC 10181-4, “Information tech-
nology — Security Frameworks in Open Systems: Non-
repudiation framework”, 1996

ITU-T X.814 | ISO
10181-5

ITU-T Rec X.814 | ISO/IEC 10181-5, “Information tech-
nology — Security Frameworks in Open Systems: Confi-
dentiality framework”, 1996

KaSt98 BURT KALISKI and JESSICA STADDON, “PKCS #1: RSA Cryptog-
raphy Specifications, Version 2.0”, Request for Comments
RFC 2437, 1997,
http://www.ietf.org/rfc/rfc2437.txt

KoNe93 J. KOHL and C. NEUMAN, “The Kerberos Network Authenti-
cation Service (V5)”, Request for Comments RFC 1510,
1993,
http://www.ietf.org/rfc/rfc1510.txt

KrBeCa97 HUGO KRAWCZYK, MIHIR BELLARE and RAN CANETTI, “HMAC:
Keyed-Hashing for Message Authentication”, Request for
Comments RFC 2104, 1997,
http://www.ietf.org/rfc/rfc2104.txt
184

Kudoh02 OASIS, MICHIHARU KUDO, “XACML Use Case for XML Fine-
grained Access Control”, March 2002,
http://www.oasis-open.org/committees/xacml/
docs/XACMLUseCaseXML.pdf

LLN+02 W3C, ARNAUD LE HORS, PHILIPPE LE HÉGARET, GAVIN NICOL,
LAUREN WOOD, MIKE CHAMPION and STEVE BYRNE, “Docu-
ment Object Model (DOM) Level 3 Core Specification”,
W3C Working Draft 14 January 2002,
http://www.w3.org/TR/2002/WD-DOM-Level-3-
Core-20020114

MOV96 ALFRED MENEZES, PAUL VAN OORSCHOT and SCOTT VANSTONE,
“Handbook of applied cryptography”, CRC Press, 1996,
ISBN 0-8493-8523-7

Ramos98 A. RAMOS, “IETF Identification and Security Guidelines”,
Request for Comments RFC 2323, 1998,
http://www.ietf.org/rfc/rfc2323.txt

Rams99 Blake Ramsdell, “S/MIME Version 3 Message Specifica-
tion”, Request for Comments RFC 2633, 1999,
http://www.ietf.org/rfc/rfc2633.txt

Reagle02 W3C, JOSEPH REAGLE, “XML Encryption Requirements”,
Revision 1.20,
http://www.w3.org/TR/xml-encryption-req
http://www.w3.org/Encryption/2001/Drafts/xml-
encryption-req

Resc99 E. RESCORLA, “Diffie-Hellman Key Agreement Method”,
Request For Comments RFC 2631, 1999
http://www.ietf.org/rfc/rfc2631.txt

Roe97 MICHAEL ROE, “Cryptography and Evidence”, PhD thesis,
Computer Laboratory, University of Cambridge, 1997,
http://research.microsoft.com/users/mroe/
THESIS.PDF

RSA78 R.L. RIVEST, A. SHAMIR and L.M. ADLEMAN, “A method for
obtaining digital signatures and public-key cryptosys-
tems”, Communications of the ACM, 1987

Schei01 KARL SCHEIBELHOFER, “Signing XML Documents and the
Concept of ‘What You See Is What You Sign’”, Master the-
sis, IAIK, TU Graz, January 2001

Schn962 BRUCE SCHNEIER, “Applied Cryptography” (Second edition),
John Wiley, 1996, ISBN 0-471-12845-7
185

http://www.ietf.org/rfc/rfc2323.txt
http://www.oasis-open.org/committees/xacml/docs/XACMLUseCaseXML.pdf
http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20020114
http://www.w3.org/TR/xml-encryption-req
http://www.w3.org/Encryption/2001/Drafts/xml-encryption-req
http://research.microsoft.com/users/mroe/THESIS.PDF

186

	0 Headers
	Title page
	Doctorate Thesis Disclaimer
	Bibliographic Information
	Dedication
	Acknowledgements
	Danksagung
	Abstract
	Zusammenfassung
	Table of Contents
	List of figures

	1 Introduction
	2 IT Security Services and Mechanisms
	2.1 Security services
	2.2 Confidentiality
	2.2.1 Definitions
	2.2.2 Ways to disclose information
	2.2.3 Types of confidentiality security mechanisms
	2.2.4 Cryptographic algorithms for confidentiality security mechanisms
	2.2.4.1 Encryption mechanisms
	2.2.4.2 Symmetric encryption systems
	2.2.4.3 Symmetric encryption algorithms
	2.2.4.4 Asymmetric encryption systems
	2.2.4.5 Asymmetric encryption algorithms

	2.2.5 Key Management
	2.2.6 Pseudo random bit generation

	2.3 Traffic Flow Confidentiality
	2.3.1 Security mechanisms for traffic flow confidentiality
	2.3.1.1 Confidentiality provision through data padding
	2.3.1.2 Confidentiality provision through dummy events
	2.3.1.3 Examples

	2.3.2 Analogies between network traffic and structured data

	2.4 Data integrity
	2.4.1 Types of data integrity services
	2.4.2 Data integrity mechanisms
	2.4.3 Data integrity algorithms

	2.5 Authentication
	2.5.1 Authentication mechanisms
	2.5.2 Authentication protocols

	2.6 Access Control
	2.7 Plausible Deniability

	3 Introduction to XML
	3.1 XML v1.0
	3.2 XML Namespaces
	3.2.1 An example with namespaces
	3.2.2 Namespaces for Attributes
	3.2.3 Redeclaring namespaces and undeclaring default namespaces
	3.2.4 Special namespaces
	3.2.5 Relative URLs in namespaces
	3.2.6 Namespaces 1.1

	3.3 XML InfoSet
	3.4 Document Object Model (DOM)
	3.5 XPath
	3.5.1 XPath axes
	3.5.1.1 self axis
	3.5.1.2 Parent axis
	3.5.1.3 Ancestor axis
	3.5.1.4 Ancestor-or-self axis
	3.5.1.5 Child axis
	3.5.1.6 Descendant axis
	3.5.1.7 Descendant-or-self axis
	3.5.1.8 Preceding-sibling axis
	3.5.1.9 Following-sibling axis
	3.5.1.10 Preceding axis
	3.5.1.11 Following axis
	3.5.1.12 Attribute axis
	3.5.1.13 Namespace axis
	3.5.1.14 Partitioning of the document using axes

	3.5.2 XPath examples
	3.5.2.1 Example 1
	3.5.2.2 Example 2

	3.6 Differences between the DOM2 and XPath data model

	4 Canonical XML and XML Signature
	4.1 Canonical XML
	4.1.1 Document subsets
	4.1.2 Applications of Canonical XML
	4.1.2.1 XML Signature
	4.1.2.2 XML Encryption
	4.1.2.3 Comparison of XML documents or fragments

	4.2 XML Signature
	4.2.1 Introduction
	4.2.2 Enveloping, enveloped and detached signatures
	4.2.2.1 Enveloping signatures
	4.2.2.2 Detached signatures
	4.2.2.3 Enveloped signatures
	4.2.2.4 Comparison

	4.2.3 References
	4.2.3.1 Basics
	4.2.3.2 De-referencing URI attributes
	4.2.3.3 Transformation of resources using Transform elements

	4.2.4 SignedInfo element
	4.2.4.1 SignatureValue element
	4.2.4.2 Complex transforms vs. multiple references

	4.2.5 Key Management using the KeyInfo element
	4.2.6 Embedded objects for enveloping signatures - the Object element

	5 Confidentiality Systems - State of the Art
	5.1 Encryption of Unstructured Data
	5.1.1 Example: IP Security Protocol (IPSec)
	5.1.2 Example: Transport Layer Security (TLS)
	5.1.3 Example: S/MIME
	5.1.4 Example: OpenPGP

	5.2 Selective Field Confidentiality
	5.3 W3C XML Encryption
	5.3.1 Introduction
	5.3.2 Encryption for multiple recipients
	5.3.2.1 Encrypting the same content
	5.3.2.2 Super-Encryption

	5.3.3 Serialization of XML for XML Encryption
	5.3.4 An Example of XML Encryption
	5.3.5 Ciphertext Locations
	5.3.6 XML Encryption Key Management
	5.3.7 XML Key Management

	5.4 Information Disclosure in Encryption Systems
	5.5 XML Access Control
	5.5.1 Introduction
	5.5.2 The invisible ancestors problem
	5.5.2.1 The Schema-friendly solution
	5.5.2.2 Real Invisible Ancestors

	5.5.3 Information disclosure

	5.6 Summary

	6 Requirements for the New Confidentiality System
	7 XML Pool Encryption
	7.1 Basic mechanism
	7.2 Terms used in this chapter
	7.2.1 Document states
	7.2.2 Node types
	7.2.3 Components of the pool encryption procedure.
	7.2.4 Components of the pool decryption procedure
	7.2.5 Terms about the labeling procedure

	7.3 Concepts and design principles
	7.3.1 Removing nodes from the tree
	7.3.2 Pool Key Management
	7.3.3 Dummy nodes

	7.4 Representing the position of a node in the tree
	7.4.1 Simple approaches
	7.4.2 “Adjacency List Mode” (ALM)
	7.4.2.1 Overview
	7.4.2.2 Analogy between the ALM and the event stream of an XML parser
	7.4.2.3 Storing ALM labels

	7.5 “Modified Adjacency List Mode” (MALM)
	7.5.1 A MALM example
	7.5.2 Definitions
	7.5.3 Interval generators
	7.5.4 Stepsize S
	7.5.4.1 Enabling the tree labeling process
	7.5.4.2 Hiding dependencies between nodes
	7.5.4.3 Length of encoded labels

	7.6 Key Management
	7.6.1 Overview
	7.6.2 Relationship between encrypted nodes and node keys
	7.6.3 Collaboration of users

	7.7 XML Structure
	7.8 Dummy Nodes
	7.9 Syntax for the algorithms
	7.10 Node selection procedure
	7.10.1 Overview
	7.10.2 Algorithm
	7.10.3 Example

	7.11 Pool encryption procedure
	7.11.1 Labelling procedure
	7.11.1.1 Overview
	7.11.1.2 Algorithm

	7.11.2 Pruning procedure
	7.11.2.1 Overview
	7.11.2.2 Algorithm

	7.11.3 Node encryption procedure
	7.11.3.1 Overview
	7.11.3.2 Algorithm

	7.12 Pool decryption procedure
	7.12.1 Node decryption procedure
	7.12.1.1 Overview
	7.12.1.2 Algorithm

	7.12.2 Node restoration procedure
	7.12.2.1 Overview
	7.12.2.2 Algorithms for the node restoration
	7.12.2.2.1 getNearestAncestor algorithm
	7.12.2.2.2 parentalizeOrphan algorithm
	7.12.2.2.3 restoreNode algorithm

	7.13 A restoration example
	7.13.1 First node restoration example
	7.13.2 Second node restoration example
	7.13.3 Third node restoration example

	7.14 Encryption granularity
	7.14.1 Document information item
	7.14.2 Comment information items
	7.14.3 Processing Instruction information items
	7.14.4 Element information items
	7.14.4.1 Attribute handling
	7.14.4.2 Namespace handling

	7.14.5 Attribute information items
	7.14.6 Namespace information items
	7.14.7 Character information items
	7.14.8 Document Type Decl information items
	7.14.9 Unexpanded Entity Reference information items
	7.14.10 Unparsed Entity information items
	7.14.11 Notation information items

	7.15 Correctness of the Modified Adjacency List Mode
	7.15.1 Introduction
	7.15.2 Proof of correctness
	7.15.3 Proof of non-ambiguous reconstruction

	7.16 Editing documents after encryption
	7.16.1 Destroying the label mechanism
	7.16.2 Enabling editing in public documents
	7.16.3 Trade-off between editability and structure awareness

	7.17 Schema validity and encryption

	8 Properties of XML Pool Encryption
	8.1 Confidentiality of arbitrary nodes
	8.2 Confidentiality of the original structure
	8.3 Confidentiality of the total number of confidential nodes
	8.4 Plausible deniability

	9 Conclusions
	9.1 Summary
	9.2 Future work

	Annex Implementation
	A.1 Implementation of XML Pool Encryption
	A.2 Syntax of pool encryption
	A.2.1 EncryptedPool
	A.2.2 EncryptedNodes
	A.2.3 EncryptedNode
	A.2.4 KeyCollections
	A.2.5 EncryptedKeyCollection
	A.2.6 KeyCollection
	A.2.7 Serialization format for confidential nodes

	A.3 The Apache XML Signature Implementation
	A.3.1 org.apache.xml.security.* package
	A.3.2 org.apache.xml.security.algorithm.**.* Package
	A.3.3 org.apache.xml.security.c14n.**.* Package
	A.3.4 org.apache.xml.security.keys.(content).* package
	A.3.5 org.apache.xml.security.keys.keyresolver.* package
	A.3.6 org.apache.xml.security.keys.storage.* package
	A.3.7 org.apache.xml.security.signature.* package
	A.3.8 org.apache.xml.security.transforms.* package
	A.3.9 org.apache.xml.security.utils.* package
	A.3.10 org.apache.xml.security.utils.resolver.**.* package
	A.3.11 exceptions of the org.apache.xml.security hierarchy

	References

